8,310 research outputs found

    Investigation of the SH3BP2 Gene Mutation in Cherubism

    Get PDF
    Cherubism is a rare developmental lesion of the jaw that is generally inherited as an autosomal dominant trait. Recent studies have revealed point mutations in the SH3BP2 gene in cherubism patients. In this study, we examined a 6-year-old Korean boy and his family. We found a Pro418Arg mutation in the SH3BP2 gene of the patient and his mother. A father and his 30-month-old younger brother had no mutations. Immunohistochemically, the multinucleated giant cells proved positive for CD68 and tartrate-resistant acid phosphatase (TRAP). Numerous spindle-shaped stromal cells expressed a ligand for receptor activator of nuclear factor kB (RANKL), but not in multinucleated giant cells. These results provide evidence that RANKL plays a critical role in the differentiation of osteoclast precursor cells to multinucleated giant cells in cherubism. Additionally, genetic analysis may be a useful method for differentiation of cherubism.</p

    The Effect of Negative CSR Information by Luxury Fashion Brands on Consumer Response

    Get PDF
    Contrary to positive corporate social responsibility (CSR) activities by luxury fashion brands in western countries, little attention has been paid by the same companies to Korean society (FSS, 2012). South Korea is poised to be the next luxury power house in Asia, even overtaking Japan (Luxe Brand Advisors, 2012). Are Korean consumers not as sensitive as western consumers about CSR by luxury fashion brands? To answer these questions, this study explores the effect of negative CSR information by luxury fashion companies on consumer responses

    A Corpus of Sentence-level Annotations of Local Acceptability with Reasons

    Get PDF

    Toward Green Synthesis of Graphene Oxide Using Recycled Sulfuric Acid via Couette-Taylor Flow

    Get PDF
    Developing eco-friendly and cost-effective processes for the synthesis of graphene oxide (GO) is essential for its widespread industrial applications. In this work, we propose a green synthesis technique for GO production using recycled sulfuric acid and filter-processed oxidized natural graphite obtained from a Couette-Taylor flow reactor. The viscosity of reactant mixtures processed from Couette-Taylor flow was considerably lower (???200 cP at 25 ??C) than that of those from Hummers&apos; method, which enabled the simple filtration process. The filtered sulfuric acid can be recycled and reused for the repetitive GO synthesis with negligible differences in the as-synthesized GO qualities. This removal of sulfuric acid has great potential in lowering the overall GO production cost as the amount of water required during the fabrication process, which takes a great portion of the total production cost, can be dramatically reduced after such acid filtration. The proposed eco-friendly GO fabrication process is expected to promote the commercial application of graphene materials into industry shortly

    Phytohormone abscisic acid control RNA-dependent RNA polymerase 6 gene expression and post-transcriptional gene silencing in rice cells

    Get PDF
    RNA-dependent RNA polymerase 6 (RDR6) catalyses dsRNA synthesis for post-transcriptional gene silencing (PTGS)-associated amplification and the generation of endogeneous siRNAs involved in developmental determinations or stress responses. The functional importance of RDR6 in PTGS led us to examine its connection to the cellular regulatory network by analyzing the hormonal responses of RDR6 gene expression in a cultured cell system. Delivery of dsRNA, prepared in vitro, into cultured rice (Oryza sativa cv. Japonica Dongjin) cells successfully silenced the target isocitrate lyase (ICL) transcripts. Silencing was transient in the absence of abscisic acid (ABA), while it became persistent in the presence of ABA in growth medium. A transcription assay of the OsRDR6 promoter showed that it was positively regulated by ABA. OsRDR6-dependent siRNA(ICL) generation was also significantly up-regulated by ABA. The results showed that, among the five rice OsRDR isogenes, only OsRDR6 was responsible for the observed ABA-mediated amplification and silencing of ICL transcripts. We propose that ABA modulates PTGS through the transcriptional control of the OsRDR6 gene

    Acidic pH shock induces the expressions of a wide range of stress-response genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental signals usually enhance secondary metabolite production in <it>Streptomycetes </it>by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in <it>Streptomyces </it>strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in <it>S. coelicolor </it>A3(2).</p> <p>Results</p> <p>According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of <it>sigH </it>(heat shock), <it>sigR </it>(oxidative stress), <it>sigB </it>(osmotic shock), and <it>hrdD </it>that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of <it>hspR </it>was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall.</p> <p>Conclusion</p> <p>From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.</p
    corecore