2,287 research outputs found
Prognostic Value of Metastatic Tumoral Caveolin-1 Expression in Patients with Resected Gastric Cancer
Objective. Caveolin-1 (Cav-1), as the main component of caveolae, has complex roles in tumourigenesis in human malignancies. We investigated Cav-1 in primary and metastatic tumor cells of gastric cancer (GC) and its association with clinical outcomes. Methods. We retrieved 145 cases of GC who had undergone curative gastrectomy. The expression levels of Cav-1 was evaluated by immunohistochemistry, and its association with clinicopathological parameters and patient survival was analyzed. Results. High expression of Cav-1 protein of the GC in the stomach and metastatic lymph node was 12.4% (18/145) and 16.5% (15/91). In the multivariate analysis, tumoral Cav-1 protein in metastatic lymph node showed prognostic significance for relapse-free survival (RFS, HR, 3.934; 95% CI, 1.882–8.224; P=0.001) and cancer-specific survival outcome (CSS, HR, 2.681; 95% CI, 1.613–8.623; P=0.002). Among the GCs with metastatic lymph node, it remained as a strong indicator of poor prognosis for RFS (HR, 3.136; 95% CI, 1.444–6.810; P=0.004) and CSS (HR, 2.509; 95% CI, 1.078–5.837; P=0.032). Conclusion. High expression of tumoral Cav-1 protein in metastatic lymph node is associated with unfavorable prognosis of curative resected GC, indicating the potential of novel prognostic markers
Characteristics of high efficiency current charging system for HTS magnet with solar energy
AbstractIn terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program
Realization of giant magnetoelectricity in helimagnets
We show that low field magnetoelectric (ME) properties of helimagnets
Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22 can be efficiently tailored by Al-substitution
level. As x increases, the critical magnetic field for switching electric
polarization is systematically reduced from ~1 T down to ~1 mT, and the ME
susceptibility is greatly enhanced to reach a giant value of 2.0 x 10^4 ps/m at
an optimum x = 0.08. We find that control of nontrivial orbital moment in the
octahedral Fe sites through the Al-substitution is crucial for fine tuning of
magnetic anisotropy and obtaining the conspicuously improved ME
characteristics
Strong carrier localization and diminished quantum-confined Stark effect in ultra-thin high-indium-content InGaN quantum wells with violet light emission
Here, we report on the optical and structural characteristics of violet-light-emitting, ultra-thin, high-Indium-content (UTHI) InGaN/GaN multiple quantum wells (MQWs), and of conventional low-In-content MQWs, which both emit at similar emission energies though having different well thicknesses and In compositions. The spatial inhomogeneity of In content, and the potential fluctuation in high-efficiency UTHI MQWs were compared to those in the conventional low-In-content MQWs. We conclude that the UTHI InGaN MQWs are a promising structure for achieving better quantum efficiency in the visible and near-ultraviolet spectral range, owing to their strong carrier localization and reduced quantum-confined Stark effect.open0
Electric polarization enhancement in multiferroic CoCr2O4 crystals with Cr-site mixing
Single crystals of multiferroic cobalt chromite Co (Cr2-x Cox) O4 have been grown via several methods to have different Co3+ doping levels (x=0.0, 0.14, and 0.18). Under magnetic fields, all the crystals display electric polarization reversal below their spiral spin ordering temperatures. We find that both saturated electric polarization and magnetization under magnetic fields increase significantly with the increase in x. This result can be qualitatively explained by a broken balance between at least two electric polarization contributions existing in CoCr2 O4 and is expected to be useful in tailoring electric polarization in similar kinds of multiferroics. © 2009 American Institute of Physics.open222
Traveltime calculations from frequency-domain downward-continuation algorithms
We present a new, fast 3D traveltime calculation algorithm
that employs existing frequency-domain waveequation
downward-continuation software. By modifying
such software to solve for a few complex (rather than
real) frequencies, we are able to calculate not only the
first arrival and the approximately most energetic traveltimes
at each depth point but also their corresponding
amplitudes.We compute traveltimes by either taking
the logarithm of displacements obtained by the oneway
wave equation at a frequency or calculating derivatives
of displacements numerically. Amplitudes are estimated
from absolute value of the displacement at a
frequency.
By using the one-way downgoing wave equation, we
also circumvent generating traveltimes corresponding to
near-surface upcoming head waves not often needed in
migration.We compare the traveltimes computed by our
algorithm with those obtained by picking the most energetic
arrivals from finite-difference solutions of the
one-way wave equation, and show that our traveltime
calculation method yields traveltimes comparable to solutions
of the one-way wave equation. We illustrate the
accuracy of our traveltime algorithm by migrating the
2D IFP Marmousi and the 3D SEG/EAGE salt models.This work was financially supported by National Laboratory
Project of Ministry of Science and Technology, Brain Korea 21
project of theKorea Ministry of Education, and grant No. R03-
2000-000-00003-0 from the Basic Research Program of the
Korea Science & Engineering Foundation
Does robot-assisted laparoscopic radical prostatectomy enable to obtain adequate oncological and functional outcomes during the learning curve? From the Korean experience
To estimate the short-term results of robot-assisted laparoscopic radical prostatectomy (RALRP) during the learning curve, in terms of surgical, oncological and functional outcomes, we conducted a prospective survey on RALRP. From July 2007, a single surgeon performed 63 robotic prostatectomies using the same operative technique. Perioperative data, including pathological and early functional results of the patient, were collected prospectively and analyzed. Along with the accumulation of the cases, the total operative time, setup time, console time and blood loss were significantly decreased. No major complication was present in any patient. Transfusion was needed in six patients; all of them were within the initial 15 cases. The positive surgical margin rate was 9.8% (5/51) in pT2 disease. The most frequent location of positive margin in this stage was the lateral aspect (60%), but in pT3 disease multiple margins were the most frequent (41.7%). Overall, 53 (84.1%) patients had totally continent status and the median time to continence was 6.56 weeks. Among 17 patients who maintained preoperative sexual activity ( Sexual Health Inventory for Men \u3e = 17), stage below pT2, followed up for \u3e 6 months with minimally one side of neurovascular bundle preservation procedure, 12 (70.6%) were capable of intercourse postoperatively, and the mean time for sexual intercourse after operation was 5.7 months. In this series, robotic prostatectomy was a feasible and reproducible technique, with a short learning curve and low perioperative complication rate. Even during the initial phase of the learning curve, satisfactory results were obtained with regard to functional and oncological outcome
- …