26,967 research outputs found
The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars
The detailed chemical composition of most metal-poor halo stars has been
found to be highly uniform, but a minority of stars exhibit dramatic
enhancements in their abundances of heavy neutron-capture elements and/or of
carbon. The key question for Galactic chemical evolution models is whether
these peculiarities reflect the composition of the natal clouds, or if they are
due to later mass transfer of processed material from a binary companion. If
the former case applies, the observed excess of certain elements was implanted
within selected clouds in the early ISM from a production site at interstellar
distances. Our aim is to determine the frequency and orbital properties of
binaries among these chemically peculiar stars. This information provides the
basis for deciding whether mass transfer from a binary companion is necessary
and sufficient to explain their unusual compositions. This paper discusses our
study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element
enhanced VMP and EMP stars. High-resolution, low signal-to-noise spectra of the
stars were obtained at roughly monthly intervals over 8 years with the FIES
spectrograph at the Nordic Optical Telescope. From these spectra, radial
velocities with an accuracy of ~100 m/s were determined by cross-correlation
against an optimized template. 14 of the programme stars exhibit no significant
RV variation over this period, while 3 are binaries with orbits of typical
eccentricity for their periods, resulting in a normal binary frequency of
~18+-6% for the sample. Our results confirm our preliminary conclusion from
2011, based on partial data, that the chemical peculiarity of the r-I and r-II
stars is not caused by any putative binary companions. Instead, it was
imprinted on the natal molecular clouds of these stars by an external, distant
source. Models of the ISM in early galaxies should account for such mechanisms.Comment: 14 pages, 3 figures, accepted for publication in Astronomy and
Astrophysic
The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars
The detailed composition of most metal-poor halo stars has been found to be
very uniform. However, a fraction of 20-70% (increasing with decreasing
metallicity) exhibit dramatic enhancements in their abundances of carbon - the
so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic
chemical evolution models is whether this non-standard composition reflects
that of the stellar natal clouds, or is due to local, post-birth mass transfer
of chemically processed material from a binary companion; CEMP stars should
then all be members of binary systems. Our aim is to determine the frequency
and orbital parameters of binaries among CEMP stars with and without
over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars,
respectively - as a test of this local mass-transfer scenario. This paper
discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider
a similar sample of CEMP-s stars. Most programme stars exhibit no statistically
significant radial-velocit variation over this period and appear to be single,
while four are found to be binaries with orbital periods of 300-2,000 days and
normal eccentricity; the binary frequency for the sample is 17+-9%. The single
stars mostly belong to the recently-identified ``low-C band'', while the
binaries have higher absolute carbon abundances. We conclude that the
nucleosynthetic process responsible for the strong carbon excess in these
ancient stars is unrelated to their binary status; the carbon was imprinted on
their natal molecular clouds in the early Galactic ISM by an even earlier,
external source, strongly indicating that the CEMP-no stars are likely bona
fide second-generation stars. We discuss potential production sites for carbon
and its transfer across interstellar distances in the early ISM, and
implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and
Astrophysic
(2,2)-Formalism of General Relativity: An Exact Solution
I discuss the (2,2)-formalism of general relativity based on the
(2,2)-fibration of a generic 4-dimensional spacetime of the Lorentzian
signature. In this formalism general relativity is describable as a Yang-Mills
gauge theory defined on the (1+1)-dimensional base manifold, whose local gauge
symmetry is the group of the diffeomorphisms of the 2-dimensional fibre
manifold. After presenting the Einstein's field equations in this formalism, I
solve them for spherically symmetric case to obtain the Schwarzschild solution.
Then I discuss possible applications of this formalism.Comment: 2 figures included, IOP style file neede
Study of Resistive Micromegas in a Mixed Neutron and Photon Radiation Field
The Muon ATLAS Micromegas Activity (MAMMA) focuses on the development and
testing of large-area muon detectors based on the bulk-Micromegas technology.
These detectors are candidates for the upgrade of the ATLAS Muon System in view
of the luminosity upgrade of Large Hadron Collider at CERN (sLHC). They will
combine trigger and precision measurement capability in a single device. A
novel protection scheme using resistive strips above the readout electrode has
been developed. The response and sparking properties of resistive Micromegas
detectors were successfully tested in a mixed (neutron and gamma) high
radiation field supplied by the Tandem accelerator, at the N.C.S.R. Demokritos
in Athens. Monte-Carlo studies have been employed to study the effect of 5.5
MeV neutrons impinging on Micromegas detectors. The response of the Micromegas
detectors on the photons originating from the inevitable neutron inelastic
scattering on the surrounding materials of the experimental facility was also
studied
Dynamic model for failures in biological systems
A dynamic model for failures in biological organisms is proposed and studied
both analytically and numerically. Each cell in the organism becomes dead under
sufficiently strong stress, and is then allowed to be healed with some
probability. It is found that unlike the case of no healing, the organism in
general does not completely break down even in the presence of noise. Revealed
is the characteristic time evolution that the system tends to resist the stress
longer than the system without healing, followed by sudden breakdown with some
fraction of cells surviving. When the noise is weak, the critical stress beyond
which the system breaks down increases rapidly as the healing parameter is
raised from zero, indicative of the importance of healing in biological
systems.Comment: To appear in Europhys. Let
Ultra-stripped Type Ic supernovae from close binary evolution
Recent discoveries of weak and fast optical transients raise the question of
their origin. We investigate the minimum ejecta mass associated with
core-collapse supernovae (SNe) of Type Ic. We show that mass transfer from a
helium star to a compact companion can produce an ultra-stripped core which
undergoes iron core collapse and leads to an extremely fast and faint SN Ic. In
this Letter, a detailed example is presented in which the pre-SN stellar mass
is barely above the Chandrasekhar limit, resulting in the ejection of only
~0.05-0.20 M_sun of material and the formation of a low-mass neutron star. We
compute synthetic light curves of this case and demonstrate that SN 2005ek
could be explained by our model. We estimate that the fraction of such
ultra-stripped to all SNe could be as high as 0.001-0.01. Finally, we argue
that the second explosion in some double neutron star systems (for example, the
double pulsar PSR J0737-3039B) was likely associated with an ultra-stripped SN
Ic.Comment: ApJ Letters, in press, 6 pages, 5 figures (emulateapj style). Very
minor changes to match printed version. Follow DOI link below for online
published versio
New Hamiltonian formalism and quasi-local conservation equations of general relativity
I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the
(2,2) formalism without assuming isometries. In this formalism, quasi-local
energy, linear momentum, and angular momentum are identified from the four
Einstein's equations of the divergence-type, and are expressed geometrically in
terms of the area of a two-surface and a pair of null vector fields on that
surface. The associated quasi-local balance equations are spelled out, and the
corresponding fluxes are found to assume the canonical form of energy-momentum
flux as in standard field theories. The remaining non-divergence-type
Einstein's equations turn out to be the Hamilton's equations of motion, which
are derivable from the {\it non-vanishing} Hamiltonian by the variational
principle. The Hamilton's equations are the evolution equations along the
out-going null geodesic whose {\it affine} parameter serves as the time
function. In the asymptotic region of asymptotically flat spacetimes, it is
shown that the quasi-local quantities reduce to the Bondi energy, linear
momentum, and angular momentum, and the corresponding fluxes become the Bondi
fluxes. The quasi-local angular momentum turns out to be zero for any
two-surface in the flat Minkowski spacetime. I also present a candidate for
quasi-local {\it rotational} energy which agrees with the Carter's constant in
the asymptotic region of the Kerr spacetime. Finally, a simple relation between
energy-flux and angular momentum-flux of a generic gravitational radiation is
discussed, whose existence reflects the fact that energy-flux always
accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex
Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films
We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial
thin films, resulting in a giant flexoelectric effect. Using grazing-incidence
in-plane X-ray diffraction, we measured strain gradients in the films, which
were 6 or 7 orders of magnitude larger than typical values reported for bulk
oxides. The combination of transmission electron microscopy, electrical
measurements, and electrostatic calculations showed that flexoelectricity
provides a means of tuning the physical properties of ferroelectric epitaxial
thin films, such as domain configurations and hysteresis curves.Comment: Accepted by Phys. Rev. Let
Polarization Relaxation Induced by Depolarization Field in Ultrathin Ferroelectric BaTiO Capacitors
Time-dependent polarization relaxation behaviors induced by a depolarization
field were investigated on high-quality ultrathin
SrRuO/BaTiO/SrRuO capacitors. The values were
determined experimentally from an applied external field to stop the net
polarization relaxation. These values agree with those from the electrostatic
calculations, demonstrating that a large inside the ultrathin
ferroelectric layer could cause severe polarization relaxation. For numerous
ferroelectric devices of capacitor configuration, this effect will set a
stricter size limit than the critical thickness issue
- …