24,358 research outputs found

    Gravitationally Coupled Electroweak Monopole

    Get PDF
    We present a family of gravitationally coupled electroweak monopole solutions in Einstein-Weinberg-Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes

    Finite Energy Electroweak Dyon

    Get PDF
    The recent MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss different ways to estimate the mass of the electroweak monopole. We first present a scaling argument which indicates that the mass of the electroweak monopole to be around 4 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strengths of the electromagnetic interaction of WW-boson in the standard model. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC.Comment: arXiv admin note: substantial text overlap with arXiv:hep-th/0210299, arXiv:hep-th/970703

    Single Cooper-pair pumping in the adiabatic limit and beyond

    Get PDF
    We demonstrate controlled pumping of Cooper pairs down to the level of a single pair per cycle, using an rf-driven Cooper-pair sluice. We also investigate the breakdown of the adiabatic dynamics in two different ways. By transferring many Cooper pairs at a time, we observe a crossover between pure Cooper-pair and mixed Cooper-pair-quasiparticle transport. By tuning the Josephson coupling that governs Cooper-pair tunneling, we characterize Landau-Zener transitions in our device. Our data are quantitatively accounted for by a simple model including decoherence effects.Comment: 5 pages, 5 figure

    Mapless Online Detection of Dynamic Objects in 3D Lidar

    Full text link
    This paper presents a model-free, setting-independent method for online detection of dynamic objects in 3D lidar data. We explicitly compensate for the moving-while-scanning operation (motion distortion) of present-day 3D spinning lidar sensors. Our detection method uses a motion-compensated freespace querying algorithm and classifies between dynamic (currently moving) and static (currently stationary) labels at the point level. For a quantitative analysis, we establish a benchmark with motion-distorted lidar data using CARLA, an open-source simulator for autonomous driving research. We also provide a qualitative analysis with real data using a Velodyne HDL-64E in driving scenarios. Compared to existing 3D lidar methods that are model-free, our method is unique because of its setting independence and compensation for pointcloud motion distortion.Comment: 7 pages, 8 figure
    • …
    corecore