20,757 research outputs found
EACOF: A Framework for Providing Energy Transparency to enable Energy-Aware Software Development
Making energy consumption data accessible to software developers is an
essential step towards energy efficient software engineering. The presence of
various different, bespoke and incompatible, methods of instrumentation to
obtain energy readings is currently limiting the widespread use of energy data
in software development. This paper presents EACOF, a modular Energy-Aware
Computing Framework that provides a layer of abstraction between sources of
energy data and the applications that exploit them. EACOF replaces platform
specific instrumentation through two APIs - one accepts input to the framework
while the other provides access to application software. This allows developers
to profile their code for energy consumption in an easy and portable manner
using simple API calls. We outline the design of our framework and provide
details of the API functionality. In a use case, where we investigate the
impact of data bit width on the energy consumption of various sorting
algorithms, we demonstrate that the data obtained using EACOF provides
interesting, sometimes counter-intuitive, insights. All the code is available
online under an open source license. http://github.com/eaco
Dynamic model for failures in biological systems
A dynamic model for failures in biological organisms is proposed and studied
both analytically and numerically. Each cell in the organism becomes dead under
sufficiently strong stress, and is then allowed to be healed with some
probability. It is found that unlike the case of no healing, the organism in
general does not completely break down even in the presence of noise. Revealed
is the characteristic time evolution that the system tends to resist the stress
longer than the system without healing, followed by sudden breakdown with some
fraction of cells surviving. When the noise is weak, the critical stress beyond
which the system breaks down increases rapidly as the healing parameter is
raised from zero, indicative of the importance of healing in biological
systems.Comment: To appear in Europhys. Let
(2,2)-Formalism of General Relativity: An Exact Solution
I discuss the (2,2)-formalism of general relativity based on the
(2,2)-fibration of a generic 4-dimensional spacetime of the Lorentzian
signature. In this formalism general relativity is describable as a Yang-Mills
gauge theory defined on the (1+1)-dimensional base manifold, whose local gauge
symmetry is the group of the diffeomorphisms of the 2-dimensional fibre
manifold. After presenting the Einstein's field equations in this formalism, I
solve them for spherically symmetric case to obtain the Schwarzschild solution.
Then I discuss possible applications of this formalism.Comment: 2 figures included, IOP style file neede
Impact of reionization on CMB polarization tests of slow-roll inflation
Estimates of inflationary parameters from the CMB B-mode polarization
spectrum on the largest scales depend on knowledge of the reionization history,
especially at low tensor-to-scalar ratio. Assuming an incorrect reionization
history in the analysis of such polarization data can strongly bias the
inflationary parameters. One consequence is that the single-field slow-roll
consistency relation between the tensor-to-scalar ratio and tensor tilt might
be excluded with high significance even if this relation holds in reality. We
explain the origin of the bias and present case studies with various tensor
amplitudes and noise characteristics. A more model-independent approach can
account for uncertainties about reionization, and we show that parametrizing
the reionization history by a set of its principal components with respect to
E-mode polarization removes the bias in inflationary parameter measurement with
little degradation in precision.Comment: 9 pages, 6 figures; submitted to Phys. Rev.
Schwarzian for colored Jackiw-Teitelboim gravity
We study the boundary effective action of the colored version of the
Jackiw-Teitelboim (JT) gravity. We derive the boundary action, which is the
color generalization of the Schwarzian action, from the BF
formulation of the colored JT gravity. Using different types of the
group decompositions both the zero and finite temperature cases are elaborated.
We provide the semi-classical perturbative analysis of the boundary action and
discuss the instability of the spin-1 mode and its implication for the quantum
chaos. A rainbow-AdS geometry is introduced where the color gauge symmetry
is spontaneously broken.Comment: 40 pages + appendi
Color decorations of Jackiw-Teitelboim gravity
We introduce the colored version of Jackiw-Teitelboim (JT) gravity which is
the two-dimensional dilaton gravity model with matrix-valued fields. It is
straightforwardly formulated in terms of BF action with gauge algebra
so that the standard JT gravity is embedded as
subsector. We also elaborate on the respective metric formulation which is
shown to involve the JT fields plus non-Abelian fields as well as
-matrix valued metric and dilaton fields. Their interactions are
governed by minimal couplings and potential terms of cubic and quartic orders
involving derivatives.Comment: 16 pages + appendi
Revealing Cosmic Rotation
Cosmological Birefringence (CB), a rotation of the polarization plane of
radiation coming to us from distant astrophysical sources, may reveal parity
violation in either the electromagnetic or gravitational sectors of the
fundamental interactions in nature. Until only recently this phenomenon could
be probed with only radio observations or observations at UV wavelengths.
Recently, there is a substantial effort to constrain such non-standard models
using observations of the rotation of the polarization plane of cosmic
microwave background (CMB) radiation. This can be done via measurements of the
-modes of the CMB or by measuring its TB and EB correlations which vanish in
the standard model. In this paper we show that correlations-based
estimator is the best for upcoming polarization experiments. The based
estimator surpasses other estimators because it has the smallest noise and of
all the estimators is least affected by systematics. Current polarimeters are
optimized for the detection of -mode polarization from either primordial
gravitational waves or by large scale structure via gravitational lensing. In
the paper we also study optimization of CMB experiments for the detection of
cosmological birefringence, in the presence of instrumental systematics, which
by themselves are capable of producing correlations; potentially mimicking
CB.Comment: 10 pages, 3 figures, 2 table
Susceptibility of Swine to Hepatitis E virus and its Significance to Human Health
Previous reports indicate that swine can be experimentally infected with Asian isolates of human hepatitis E virus (HEV), which supports epidemiological data indicating that domestic swine can serve as a reservoir for the virus in parts of Asia and as such have the potential to transmit the virus to humans by the fecal-oral route or through contact with pork products. The increasing incidence of human HEV infections in the western hemisphere raises the question of whether or not pigs can play a role in the transmission of this virus in the Americas. Accordingly the susceptibility of swine to a New World isolate of the human hepatitis E virus, Mexico 14, was evaluated. No evidence of infection was detected in experimental pigs. However a high herd and individual prevalence rate for seroreactivity to recombinant HEV antigen was detected in Iowa swine during the selection of experimental pigs. These observations suggests that swine vary in their susceptibility to human HEV isolates. Whether or not swine are susceptible to other New World isolates of HEV and can serve as a reservoir for human infection remains to be determined. The significance of the high rate of seroreactivity of swine to recombinant antigen with respect to human and swine health is not known. An epidemiological study currently in progress should help answer this important question
New Hamiltonian formalism and quasi-local conservation equations of general relativity
I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the
(2,2) formalism without assuming isometries. In this formalism, quasi-local
energy, linear momentum, and angular momentum are identified from the four
Einstein's equations of the divergence-type, and are expressed geometrically in
terms of the area of a two-surface and a pair of null vector fields on that
surface. The associated quasi-local balance equations are spelled out, and the
corresponding fluxes are found to assume the canonical form of energy-momentum
flux as in standard field theories. The remaining non-divergence-type
Einstein's equations turn out to be the Hamilton's equations of motion, which
are derivable from the {\it non-vanishing} Hamiltonian by the variational
principle. The Hamilton's equations are the evolution equations along the
out-going null geodesic whose {\it affine} parameter serves as the time
function. In the asymptotic region of asymptotically flat spacetimes, it is
shown that the quasi-local quantities reduce to the Bondi energy, linear
momentum, and angular momentum, and the corresponding fluxes become the Bondi
fluxes. The quasi-local angular momentum turns out to be zero for any
two-surface in the flat Minkowski spacetime. I also present a candidate for
quasi-local {\it rotational} energy which agrees with the Carter's constant in
the asymptotic region of the Kerr spacetime. Finally, a simple relation between
energy-flux and angular momentum-flux of a generic gravitational radiation is
discussed, whose existence reflects the fact that energy-flux always
accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex
- …