9 research outputs found
Targeting metastatic breast cancer with peptide epitopes derived from autocatalytic loop of Prss14/ST14 membrane serine protease and with monoclonal antibodies
Background
In order to develop a new immunotherapeutic agent targeting metastatic breast cancers, we chose to utilize autocatalytic feature of the membrane serine protease Prss14/ST14, a specific prognosis marker for ER negative breast cancer as a target molecule.
Methods
The study was conducted using three mouse breast cancer models, 4āT1 and E0771 mouse breast cancer cells into their syngeneic hosts, and an MMTV-PyMT transgenic mouse strain was used. Prss14/ST14 knockdown cells were used to test function in tumor growth and metastasis, peptides derived from the autocatalytic loop for activation were tested as preventive metastasis vaccine, and monoclonal and humanized antibodies to the same epitope were tested as new therapeutic candidates. ELISA, immunoprecipitation, Immunofluorescent staining, and flow cytometry were used to examine antigen binding. The functions of antibodies were tested in vitro for cell migration and in vivo for tumor growth and metastasis.
Results
Prss14/ST14 is critically involved in the metastasis of breast cancer and poor survival rather than primary tumor growth in two mouse models. The epitopes derived from the specific autocatalytic loop region of Prss14/ST14, based on structural modeling acted as efficient preventive metastasis vaccines in mice. A new specific monoclonal antibody mAb3F3 generated against the engineered loop structure could reduce cell migration, eliminate metastasis in PyMT mice, and can detect the Prss14/ST14 protein expressed in various human cancer cells. Humanized antibody huAb3F3 maintained the specificity and reduced the migration of human breast cancer cells in vitro.
Conclusion
Our study demonstrates that Prss14/ST14 is an important target for modulating metastasis. Our newly developed hybridoma mAbs and humanized antibody can be further developed as new promising candidates for the use in diagnosis and in immunotherapy of human metastatic breast cancer.This work is supported in part by the National Research Foundation (NRF) grant funded by the Korea government (MEST) (No. 2013R1A1A2009892 and No. 2017R1A2B4008109) and Inha Univeristy Research Grant awarded to MGK and (No. 2015R1A2A1A15054021) to SHK
Investigating the Factors that Affect Dissatisfaction/Satisfaction, Purchase Intention, and Loyalty in the Mobile Game Environment
This study posits that satisfaction/dissatisfaction can occur before the purchase of goods and services due to freemium (i.e., free and premium) models in the mobile game environment. Satisfaction/dissatisfaction before purchasing behavior might affect purchase intention and/or intention to use O2O services which is widely applied in the mobile game environment as a promotional tool. The purpose of the study is to explore the relationships among major components including utilitarian value, hedonic value, perceived risks, attitude, satisfaction, dissatisfaction, purchase intention, intention to use O2O service, and loyalty in the mobile game environment. An online survey was performed to collect the data and factor and regression analyses were applied. The findings of this study indicate that dissatisfaction may have a positive effect on purchase intention, while satisfaction is still the dominant factor in usersā behavior, and therefore satisfying the users should be prioritized, rather than devising the pricing scheme to make the users pay more.2
Data-Driven Analysis of Stratified Flow Effect on Suspended Sediment Concentration in an Estuary
An estuary is an area where a complex circulation pattern appears due to various hydrodynamic parameters such as tides, river discharge, salinity and water density. Especially during a flood, a large amount of freshwater discharge from a river can cause stratified flows due to the difference in density between freshwater and seawater. This makes it difficult to understand the mechanism of behavior of the suspended sediment concentration in an estuary. To elucidate this problem, we investigated field observation data in the Gyeongin Port area in South Korea during the rainy period. It was found that there were stratified flow features of flow velocity, salinity and temperature between the upper and lower layers due to the abruptly increased amount of freshwater from a river in the rainy period. An artificial neural network (ANN), one of the data-driven modeling techniques, was applied to inductively analyze the hydrodynamic factors affecting the suspended sediment concentration in the estuary. The ANN model showed the best performance when including river discharge, and flow velocity and salinity measured at the surface and bottom layer. This shows that stratified flow is important to understand the behavior of suspended sediment concentration in the estuary
Synergistic Antimicrobial Effects of Phage vB_AbaSi_W9 and Antibiotics against <i>Acinetobacter baumannii</i> Infection
Acinetobacter baumannii is a challenging multidrug-resistant pathogen in healthcare. Phage vB_AbaSi_W9 (GenBank: PP146379.1), identified in our previous study, shows lytic activity against 26 (89.66%) of 29 carbapenem-resistant Acinetobacter baumannii (CRAB) strains with various sequence types (STs). It is a promising candidate for CRAB treatment; however, its lytic efficiency is insufficient for complete bacterial lysis. Therefore, this study aimed to investigate the clinical utility of the phage vB_AbaSi_W9 by identifying antimicrobial agents that show synergistic effects when combined with it. The A. baumannii ATCC17978 strain was used as the host for the phage vB_AbaSi_W9. Adsorption and one-step growth assays of the phage vB_AbaSi_W9 were performed at MOIs of 0.001 and 0.01, respectively. Four clinical strains of CRAB belonging to different sequence types, KBN10P04948 (ST191), LIS2013230 (ST208), KBN10P05982 (ST369), and KBN10P05231 (ST451), were used to investigate phageāantibiotic synergy. Five antibiotics were tested at the following concentration: meropenem (0.25ā512 Āµg/mL); colistin, tigecycline, and rifampicin (0.25ā256 Āµg/mL); and ampicillin/sulbactam (0.25/0.125ā512/256 Āµg/mL). The in vitro synergistic effect of the phage and rifampicin was verified through an in vivo mouse infection model. Phage vB_AbaSi_W9 demonstrated 90% adsorption to host cells in 1 min, a 20 min latent period, and a burst size of 114 PFU/cell. Experiments combining phage vB_AbaSi_W9 with antibiotics demonstrated a pronounced synergistic effect against clinical strains when used with tigecycline and rifampicin. In a mouse model infected with CRAB KBN10P04948 (ST191), the group treated with rifampicin (100 Ī¼g/mL) and phage vB_AbaSi_W9 (MOI 1) achieved a 100% survival rateāa significant improvement over the phage-only treatment (8.3% survival rate) or antibiotic-only treatment (25% survival rate) groups. The bacteriophage vB_AbaSi_W9 demonstrated excellent synergy against CRAB strains when combined with tigecycline and rifampicin, suggesting potential candidates for phageāantibiotic combination therapy in treating CRAB infections
Isolation and Characterization of Novel Bacteriophages to Target Carbapenem-Resistant <i>Acinetobacter baumannii</i>
The spread of multidrug-resistant Acinetobacter baumannii in hospitals and nursing homes poses serious healthcare challenges. Therefore, we aimed to isolate and characterize lytic bacteriophages targeting carbapenem-resistant Acinetobacter baumannii (CRAB). Of the 21 isolated A. baumannii phages, 11 exhibited potent lytic activities against clinical isolates of CRAB. Based on host spectrum and RAPD-PCR results, 11 phages were categorized into four groups. Three phages (vB_AbaP_W8, vB_AbaSi_W9, and vB_AbaSt_W16) were further characterized owing to their antibacterial efficacy, morphology, and whole-genome sequence and were found to lyse 37.93%, 89.66%, and 37.93%, respectively, of the 29 tested CRAB isolates. The lytic spectrum of phages varied depending on the multilocus sequence type (MLST) of the CRAB isolates. The three phages contained linear double-stranded DNA genomes, with sizes of 41,326ā166,741 bp and GC contents of 34.4ā35.6%. Genome-wide phylogenetic analysis and single gene-based tree construction revealed no correlation among the three phages. Moreover, no genes were associated with lysogeny, antibiotic resistance, or bacterial toxins. Therefore, the three novel phages represent potential candidates for phage therapy against CRAB infections
Investigation of Program Efficiency Overshoot in 3D Vertical Channel NAND Flash with Randomly Distributed Traps
The incremental step pulse programming slope (ISPP) with random variation was investigated by measuring numerous threeādimensional (3D) NAND flash memory cells with a vertical nanowire channel. We stored multiple bits in a cell with the ISPP scheme and read each cell pulse by pulse. The excessive tunneling from the channel to the storage layer determines the program efficiency overshoot. Then, a broadening of the threshold voltage distribution was observed due to the abnormal program cells. To analyze the randomly varying abnormal program behavior itself, we distinguished between the read variation and overāprogramming in measurements. Using a 3D MonteāCarlo simulation, which is a probabilistic approach to solve randomness, we clarified the physical origins of overāprogramming that strongly influence the abnormal program cells in program step voltage, and randomly distributed the trap site in the nitride of a nanoscale 3D NAND string. These causes have concurrent effects, but we divided and analyzed them quantitatively. Our results reveal the origins of the variation and the overshoot in the ISPP, widening the threshold voltage distribution with traps randomly located at the nanoscale. The findings can enhance understanding of random overāprogramming and help mitigate the most problematic programming obstacles for multipleābit techniques