3,346 research outputs found

    Systematic DC/AC Performance Benchmarking of Sub-7-nm Node FinFETs and Nanosheet FETs

    Get PDF
    In this paper, we systematically evaluate dc/ac performances of sub-7-nm node fin field-effect transistors (FinFETs) and nanosheet FETs (NSEETs) using fully calibrated 3-D TCAD. The stress effects of all the devices were carefully considered in terms of carrier mobility and velocity averaged within the active regions. For detailed AC analysis, the parasitic capacitances were extracted and decomposed into several components using TCAD RF simulation platform. FinFETs improved the gate electrostatics by decreasing fin widths to 5 nm, but the fin heights were unable to improve RC delay due to the trade-off between on-state currents and gate capacitances. The NSEETs have better on-state currents than do the FinFETs because of larger effective widths (W-eff) under the same device area. Particularly p-type NSEETs have larger compressive stress within the active regions affected by metal gate encircling all around the channels, thus improving carrier mobility and velocity much. On the other hand, the NSEETs have larger gate capacitances because larger W-eff increase the gate-to-source/drain overlap and outer-fringing capacitances. In spite of that, sub-7-nm node NSEETs attain better RC delay than sub-7-nm node as well as 10-nm node FinFETs for standard and high performance applications, showing better chance for scaling down to sub-7-nm node and beyond.11Ysciescopu

    Bottom oxide Bulk FinFETs Without Punch-Through-Stopper for Extending Toward 5-nm Node

    Get PDF
    Structural advancements of 5-nm node bulk fin-shaped field-effect transistors (FinFETs) without punch-through-stopper (PTS) were introduced using fully calibrated TCAD for the first time. It is challenging to scale down conventional bulk FinFETs into 5-nm technology node due to the sub-fin leakage increase. Meanwhile, bottom oxide deposition after anisotropic etching for source/drain (S/D) epi formation prevents the sub-fin leakage effectively even without the PTS doping, thus achieving better gate-to-channel controllability. Bottom oxide FinFETs also have smaller gate capacitances than do conventional FinFETs because the parasitic capacitances decrease by smaller S/D epi separated from the bottom Si layer, which reduces junction and outer-fringing capacitances. But smaller S/D epi decreases the stresses along the channel direction, and the effective widths decrease by the bottom oxide layer blocking the current paths at the bottom side of fin channels. Furthermore, increase of the interconnect resistance and capacitance parasitics down to 5-nm node diminishes the improvements of total delays as the interconnect wire length increases greatly. In spite of these drawbacks, 5-nm node bottom oxide FinFETs achieve smaller total delays than do the 7-nm node conventional FinFETs, especially for low-power applications, thus promising for the scalability of bulk FinFETs along with simple and reliable process by avoiding PTS step.11Ysciescopu

    ‘Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells’

    Get PDF
    MicroRNA167 (miR167) was shown to cleave auxin responsive factor 8 (ARF8) mRNA in cultured rice cells. MiR167 level was found to be controlled by the presence of auxin in the growth medium. When cells grew in auxin-free medium, miR167 level decreased, resulting in an increase in the level of ARF8 mRNA. Cells growing in the normal growth medium containing auxin showed a reversed trend. It was also shown that expression of OsGH3-2, an rice IAA-conjugating enzyme, was positively regulated by ARF8. Delivery of synthesized miR167 into cells led to decrease of both ARF8 mRNA and OsGH3-2 mRNA. This study provides an evidence in which the exogeneous auxin signal is transduced to OsGH3-2 through miR167 and ARF8 in sequence. This proposed auxin signal transduction pathway, auxin-miR167-ARF8-OsGH3-2, could be, in conjunction with the other microRNA-mediated auxin signals, an important one for responding to exogeneous auxin and for determining the cellular free auxin level which guides appropriate auxin responses

    PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPAR?? at Ser273

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPAR gamma at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPAR gamma at Ser273, the molecular mechanism of PPAR gamma dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPAR gamma phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPAR gamma at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders

    Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays

    Get PDF
    The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy
    corecore