673 research outputs found
Machine-learning-aided cognitive reconfiguration for flexible-bandwidth HPC and data center networks [Invited]
This paper proposes a machine-learning (ML)-aided cognitive approach for effective bandwidth reconfiguration in optically interconnected datacenter/high-performance computing (HPC) systems. The proposed approach relies on a Hyper-X-like architecture augmented with flexible-bandwidth photonic interconnections at large scales using a hierarchical intra/inter-POD photonic switching layout. We first formulate the problem of the connectivity graph and routing scheme optimization as a mixed-integer linear programming model. A two-phase heuristic algorithm and a joint optimization approach are devised to solve the problem with low time complexity. Then, we propose an ML-based end-to-end performance estimator design to assist the network control plane with intelligent decision making for bandwidth reconfiguration. Numerical simulations using traffic distribution profiles extracted from HPC applications traces as well as random traffic matrices verify the accuracy performance of the ML design estimator (<9% error) and demonstrate up to 5 x throughput gain from the proposed approach compared with the baseline Hyper-X network using fixed all-to-all intra/inter-portable data center interconnects. (C) 2021 Optical Society of Americ
Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst
Thin and flexible composite films of raw or purified multiwalled carbon nanotube (MWCNT) with various mass fractions and poly(methylmethacrylate) (PMMA) were synthesized for electromagnetic interference (EMI) shielding material. From scanning electron microscopy and high-resolution transmission electron microscopy photographs, we observed the formation of a conducting network through MWCNTs in an insulating PMMA matrix and the existence of an Fe catalyst in MWCNTs. The dc conductivity (sigma(dc)) of the systems increased with increasing MWCNT mass fraction, showing typical percolation behavior. The measured EMI shielding efficiency (SE) of MWCNT-PMMA composites by using the extended ASTM D4935-99 method (50 MHz-13.5 GHz) increased with increasing MWCNT mass fraction as sigma(dc). The highest EMI SE for raw MWCNT-PMMA composites was similar to27 dB, indicating commercial use for far-field EMI shielding. The contribution of absorption to total EMI SE of the systems is larger than that of reflection. Based on magnetic permeability, we suggest raw MWCNTs and their composites can be used for near-field EMI shielding.open28629
Effect of 5-aminolevulinic acid-based photodynamic therapy via reactive oxygen species in human cholangiocarcinoma cells
Cancer cells have been reported to exhibit an enhanced capacity for protoporphyrin IX (PpIX) synthesis facilitated by the administration of 5-aminolevulinic acid (ALA). We investigated the effect of ALA-based photodynamic therapy (PDT) on human cholangiocarcinoma cells (HuCC-T1). Since protoporphyrin IX (PpIX), a metabolite of ALA, can produce reactive oxygen species (ROS) under irradiation and then induce phototoxicity, ALA-based PDT is a promising candidate for the treatment of cholangiocarcinoma. When various concentrations of ALA (0.05–2 mM) were used to treat HuCC-T1 cells for 6 or 24 hours, the intracellular PpIX level increased according to the ALA concentration and treatment time. Furthermore, an increased amount of PpIX in HuCC-T1 cells induced increased production of ROS by irradiation, resulting in increased phototoxicity
The liminality of trajectory shifts in institutional entrepreneurship
In this paper, we develop a process model of trajectory shifts in institutional entrepreneurship. We focus on the liminal periods experienced by institutional entrepreneurs when they, unlike the rest of the organization, recognize limits in the present and seek to shift a familiar past into an unfamiliar and uncertain future. Such periods involve a situation where the new possible future, not yet fully formed, exists side-by-side with established innovation trajectories. Trajectory shifts are moments of truth for institutional entrepreneurs, but little is known about the underlying mechanisms of how entrepreneurs reflectively deal with liminality to conceive and bring forth new innovation trajectories. Our in-depth case study research at CarCorp traces three such mechanisms (reflective dissension, imaginative projection, and eliminatory exploration) and builds the basis for understanding the liminality of trajectory shifts. The paper offers theoretical implications for the institutional entrepreneurship literature
Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer
Young-Il Jeong1,*, Do Hyung Kim1,2,*, Chung-Wook Chung1, Jin-Ju Yoo1, Kyung Ha Choi1, Cy Hyun Kim1,2, Seung Hee Ha1, Dae Hwan Kang1,2 1National Research and Development Center for Hepatobiliary Cancer, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea, Research Institute for Convergence of Biomedical Science and Technology, 2School of Medicine, Pusan National University, Yangsan, Republic of Korea*These authors contributed equally to this work.Background: Polymeric micelles using amphiphilic macromolecules are promising vehicles for antitumor targeting. In this study, we prepared anticancer agent-incorporated polymeric micelles using novel block copolymer.Methods: We synthesized a block copolymer composed of dextran and poly (DL-lactide-co-glycolide) (DexbLG) for antitumor drug delivery. Doxorubicin was selected as the anticancer drug, and was incorporated into polymeric micelles by dialysis. Polymeric micelles were observed by transmission electron microscopy to be spherical and smaller than 100 nm, with a narrow size distribution. The particle size of doxorubicin-incorporated polymeric micelles increased with increasing drug content. Higher initial drug feeding also increased the drug content. Results: During the drug-release study, an initial burst release of doxorubicin was observed for 10 hours, and doxorubicin was continuously released over 4 days. To investigate the in vitro anticancer effects of the polymeric micelles, doxorubicin-resistant HuCC-T1 cells were treated with a very high concentration of doxorubicin. In an antiproliferation study, the polymeric micelles showed higher cytotoxicity to doxorubicin-resistant HuCC-T1 cells than free doxorubicin, indicating that the polymeric micelles were effectively engulfed by tumor cells, while free doxorubicin hardly penetrated the tumor cell membrane. On confocal laser scanning microscopy, free doxorubicin expressed very weak fluorescence intensity, while the polymeric micelles expressed strong red fluorescence. Furthermore, in flow cytometric analysis, fluorescence intensity of polymeric micelles was almost twice as high than with free doxorubicin.Conclusion: DexbLG polymeric micelles incorporating doxorubicin are promising vehicles for antitumor drug targeting.Keywords: dextran, polymeric micelle, block copolymer, poly(DL-lactide-co-glycolide
Digital Platforms in the Global South: Foundations and Research Agenda
Digital platforms have become integral to many of the everyday activities that people across the globe encounter in areas like transportation, commerce and social interactions. Research on the topic has largely concentrated on the general functioning of these platforms in terms of platform governance, business strategies and consumer behaviour. Despite their significant presence in the global South, the developmental implications of digital platforms remain largely understudied. In part, this is because digital platforms are a challenging research object due to their lack of conceptual definition, their spread across different regions and industries, and their intertwined nature with institutions, actors and digital technologies. The aim of this paper is therefore twofold: to provide a conceptual definition of digital platforms, and to identify research strands in international development contexts. To do so, we draw from digital platforms literature, differentiate between transaction and innovation platforms and expose their main characteristics. We the present four strands in the form of research questions, illustrated with concrete examples, that can assist to pursue relevant studies on digital platforms and international development in the future
Investigation of Semiconductor Quantum Dots for Waveguide Electroabsorption Modulator
In this work, we investigated the use of 10-layer InAs quantum dot (QD) as active region of an electroabsorption modulator (EAM). The QD-EAM is a p-i-n ridge waveguide structure with intrinsic layer thickness of 0.4 μm, width of 10 μm, and length of 1.0 mm. Photocurrent measurement reveals a Stark shift of ~5 meV (~7 nm) at reverse bias of 3 V (75 kV/cm) and broadening of the resonance peak due to field ionization of electrons and holes was observed for E-field larger than 25 kV/cm. Investigation at wavelength range of 1,300–1320 nm reveals that the largest absorption change occurs at 1317 nm. Optical transmission measurement at this wavelength shows insertion loss of ~8 dB, and extinction ratio of ~5 dB at reverse bias of 5 V. Consequently, methods to improve the performance of the QD-EAM are proposed. We believe that QDs are promising for EAM and the performance of QD-EAM will improve with increasing research efforts
Poplar GTL1 Is a Ca2+/Calmodulin-Binding Transcription Factor that Functions in Plant Water Use Efficiency and Drought Tolerance
Diminishing global fresh water availability has focused research to elucidate mechanisms of water use in poplar, an economically important species. A GT-2 family trihelix transcription factor that is a determinant of water use efficiency (WUE), PtaGTL1 (GT-2 like 1), was identified in Populus tremula × P. alba (clone 717-IB4). Like other GT-2 family members, PtaGTL1 contains both N- and C-terminal trihelix DNA binding domains. PtaGTL1 expression, driven by the Arabidopsis thaliana AtGTL1 promoter, suppressed the higher WUE and drought tolerance phenotypes of an Arabidopsis GTL1 loss-of-function mutation (gtl1-4). Genetic suppression of gtl1-4 was associated with increased stomatal density due to repression of Arabidopsis STOMATAL DENSITY AND DISTRIBUTION1 (AtSDD1), a negative regulator of stomatal development. Electrophoretic mobility shift assays (EMSA) indicated that a PtaGTL1 C-terminal DNA trihelix binding fragment (PtaGTL1-C) interacted with an AtSDD1 promoter fragment containing the GT3 box (GGTAAA), and this GT3 box was necessary for binding. PtaGTL1-C also interacted with a PtaSDD1 promoter fragment via the GT2 box (GGTAAT). PtaSDD1 encodes a protein with 60% primary sequence identity with AtSDD1. In vitro molecular interaction assays were used to determine that Ca2+-loaded calmodulin (CaM) binds to PtaGTL1-C, which was predicted to have a CaM-interaction domain in the first helix of the C-terminal trihelix DNA binding domain. These results indicate that, in Arabidopsis and poplar, GTL1 and SDD1 are fundamental components of stomatal lineage. In addition, PtaGTL1 is a Ca2+-CaM binding protein, which infers a mechanism by which environmental stimuli can induce Ca2+ signatures that would modulate stomatal development and regulate plant water use
Tumor Necrosis Factor-Alpha G308α Gene Polymorphism and Essential Hypertension: A Meta-Analysis Involving 2244 Participants
BACKGROUND: The tumor necrosis factor-alpha (TNFα) G308A gene polymorphism has been implicated in susceptibility to essential hypertension (EH), but study results are still controversial. OBJECTIVE AND METHODS: The present meta-analysis is performed to investigate the relationship between the TNFα G308A gene polymorphism and EH. Electronic databases were searched and seven separate studies on the association of the TNF α G308A gene polymorphism with EH were analyzed. The meta-analysis involved 1092 EH patients and 1152 controls. The pooled odds ratios (ORs) and their corresponding 95% confidence interval (CI) were calculated by a fixed or random effect model. RESULTS: A significant relationship between the TNFα G308A gene polymorphism and EH was found in an allelic genetic model (OR: 1.45, 95% CI: 1.17 to 1.80, P = 0.0008), a recessive genetic model (OR: 3.181, 95% CI: 1.204 to 8.408, P = 0.02), and a homozygote model (OR: 3.454, 95% CI: 1.286 to 9.278, P = 0.014). No significant association between them was detected in both a dominant genetic model (OR: 1.55, 95% CI: 0.99 to 2.42, P = 0.06) or a heterozygote genetic model (OR: 1.45, 95% CI: 0.90 to 2.33, P = 0.13). CONCLUSION: The TNFα G308A gene polymorphism is associated with EH susceptibility
- …