763 research outputs found
Optimization of isoprene production using a metabolically engineered Escherichia Coli
The volatile C5 hydrocarbon, isoprene is an important platform chemical, which has been used in the manufacture of synthetic rubber for tires and also has the potential for various other applications such as elastomers and adhesives. Moreover, isoprene is convertible to biofuel blend stocks such as C10 gasoline, C15 diesel, and jet fuels because of its higher energy content than other biofuels. Although isoprene is currently derived from petroleum, its sustainable supply has been suffered from price fluctuation of crude oil, high refining cost and energy consumption, and low recovery yield of pure isoprene. As an alternative, the biologically produced isoprene (bio-isoprene) has been developed rapidly for the last decade. Bio-isoprene is synthesized from dimethylallyl diphosphate (DMAPP), which is derived from mevalonate (MVA) pathway or the methylerythritol phosphate (MEP) pathway, by isoprene synthase.
In this study, metabolic engineering for enhanced production of bio-isoprene was performed by deletion of relevant genes and optimization of culture condition. In comparison of isoprene production between E.coli DH5α and MG1655, lower isoprene production was observed in MG1655. The lower isoprene production in E. coli MG1655 was ascribed to the presence of recA gene which is absent in the DH5α strain. The deletion of recA gene in E.coli MG1655 allows higher isoprene production than E. coli DH5α. Moreover, the optimized expression of isoprene synthesis pathway with 0.03mM IPTG induction enhanced the isoprene production up to 2,850 mg/L. Overall, isoprene production through the optimization was improved by 28.5-fold compared to the initial production of MG1655 strain.
Please click Additional Files below to see the full abstract
Exploring the Factors Enhancing Member Participation in Virtual Communities
The purpose of this study is to find the factors that enhance member participation in virtual communities. Although there are many factors influencing member participation, this study limits its independent variables to those of managing strategy and information system quality. In addition to finding their direct impacts, this study identifies indirect effects through two mediating variables such as member visit and sense of community. The result of this study revealed that there was no significant direct path from managing strategy to participation. However, the path from sense of community to participation was strongly supported by the results. This then implies that a manager of a community has to emphasize the sense of community, membership in particular, in order to enhance participation. In addition, the results showed that sense of community could be enhanced by an appropriate managing strategy, while the number of visits could be increased by the information systems quality.</p
Evaluation of a Sodium–Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor
AbstractThe prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant
Prevention of hypoglycemia-induced neuronal death by minocycline
Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients
Antimicrobial peptide from Bacillus subtilis CSB138: characterization, killing kinetics, and synergistic potency
We studied the prospect of synergy between the antimicrobial peptide p138c and non-peptide antibiotics for increasing the potency and bacterial killing kinetics of these agents. The production of p138c was maximized in the late exponential growth phase of Bacillus subtilis CSB138. Purification of p138c resulted in a total of 4800 arbitrary units (AU) with 19.15-fold and 3.2% recovery. Peptide p138c was thermo-tolerant up to 50 °C and stable at pH 5.8 to 11. The biochemical nature of p138c was determined by a bioassay, similar to tricine-SDS-PAGE, indicating inhibition at 3 kDa. The amino acid sequence of p138c was Gly-Leu-Glu-Glu-Thr-Val-Tyr-Ile-Tyr-Gly-Ala-Asn-Met-X-Ser. Potency and killing kinetics against vancomycin-resistant Staphylococcus aureus improved considerably when p138c was synergized with oxacillin, ampicillin, and penicillin G. The minimal inhibitory concentration (MIC) of p138c showed a 4-, 8-, and 16-fold improvement when p138c was combined with oxacillin, ampicillin, and penicillin G, respectively. The fractional inhibitory concentration index for the combination of p138c and oxacillin, ampicillin, and penicillin G was 0.3125, 0.25, and 0.09, respectively. Synergy with non-peptide antibiotics resulted in enhanced killing kinetics of p138c. Hence, the synergy between antimicrobial peptide and non-peptide antibiotics may enhance the potency and bacterial killing kinetics, providing more potent and rapidly acting agents for therapeutic use. [Int Microbiol 20(1):43-53 (2017)]Keywords: Bacillus subtilis · antimicrobial peptides · killing kinetic
Application of Ganz Surgical Hip Dislocation Approach in Pediatric Hip Diseases
Ganz surgical hip dislocation is useful in the management of severe hip diseases, providing an unobstructed view of the femoral head and acetabulum. We present our early experience with this approach in pediatric hip diseases. Twenty-three hips of 21 patients with pediatric hip diseases treated using the Ganz surgical hip dislocation approach were the subjects of this study. The average age at the time of surgery was 15.7 years. There were 15 male and 6 female patients who were followed for an average of 15.1 months (range, 6 to 29 months). Diagnoses included hereditary multiple exostoses in 9 hips, slipped capital femoral epiphysis in 7, Legg-Calvé-Perthes disease in 4, osteoid osteoma in 1, pigmented villonodular synovitis in 1, and neonatal septic hip sequelae in 1. Medical records were reviewed to record diagnoses, principal surgical procedures, operative time, blood loss, postoperative rehabilitation, changes in the range of hip joint motion, and complications. Femoral head-neck osteochondroplasty was performed in 17 patients, proximal femoral realignment osteotomy in 6, open reduction and subcapital osteotomy for slipped capital femoral epiphysis (SCFE) in 2, core decompression and bone grafting in 2, hip distraction arthroplasty in 2, and synovectomy in 2. Operative time averaged 168.6 minutes when only osteochondroplasty and/or synovectomy were performed. Hip flexion range improved from a preoperative mean of 84.7 degrees to a mean of 115.0 degrees at the latest follow-up visit. Early continuous passive motion and ambulation were stressed in rehabilitation. No avascular necrosis of the femoral head was noted up to the time of the latest follow-up visit, except for in one SCFE patient whose surgical intervention was delayed for medical reasons. Ganz surgical hip dislocation provides wide exposure of the femoral head and neck, which enables complete and precise evaluation of the femoral head and neck contour. Hence, the extensive impinging bump can be excised meticulously, and the circulation of the femoral head can be monitored during surgery. The Ganz procedure was useful in severe pediatric hip diseases and allowed for quick rehabilitation with fewer complications.Y
Ethyl acetate fraction from Angelica sinensis inhibits IL-1β-induced rheumatoid synovial fibroblast proliferation and COX-2, PGE2, and MMPs production
BACKGROUND: The root of Angelica sinensis (AS), also known as "Dang-gui," was a popular herbal medicine widely used in the treatment of gynecological diseases in China, Korea, and Japan for a long time. This study aimed to determine the effects of ethyl acetate fraction from Angelica sinensis (EAAS) on the interleukin-1β (IL-1β)-induced proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and production of matrix metalloproteinases (MMPs), cyclooxygenase (COX) 2, and prostaglandin E2 (PGE2), involved in articular bone and cartilage destruction, by RASFs. RESULTS: RASF proliferation was evaluated with cholecystokinin octapeptide (CCK-8) reagent in the presence of IL-1β with/without EAAS. Expression of MMPs, tissue inhibitor of metalloproteinases-1 (TIMP-1), COXs, PGE2, and intracellular mitogen-activated protein kinase (MAPK) signaling molecules, including p-ERK, p-p38, p-JNK, and NF-κB, were examined using immunoblotting or semi-quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. EAAS inhibited IL-1β-induced RASF proliferation; MMP-1, MMP-3, and COX-2 mRNA and protein expressions; and PGE2 production. EAAS also inhibits the phosphorylation of ERK-1/2, p38, and JNK, and activation of NF-κB by IL-1β. CONCLUSION: EAAS might be a new therapeutic modality for rheumatoid arthritis management
- …