85 research outputs found

    A Neural PDE Solver with Temporal Stencil Modeling

    Full text link
    Numerical simulation of non-linear partial differential equations plays a crucial role in modeling physical science and engineering phenomena, such as weather, climate, and aerodynamics. Recent Machine Learning (ML) models trained on low-resolution spatio-temporal signals have shown new promises in capturing important dynamics in high-resolution signals, under the condition that the models can effectively recover the missing details. However, this study shows that significant information is often lost in the low-resolution down-sampled features. To address such issues, we propose a new approach, namely Temporal Stencil Modeling (TSM), which combines the strengths of advanced time-series sequence modeling (with the HiPPO features) and state-of-the-art neural PDE solvers (with learnable stencil modeling). TSM aims to recover the lost information from the PDE trajectories and can be regarded as a temporal generalization of classic finite volume methods such as WENO. Our experimental results show that TSM achieves the new state-of-the-art simulation accuracy for 2-D incompressible Navier-Stokes turbulent flows: it significantly outperforms the previously reported best results by 19.9% in terms of the highly-correlated duration time and reduces the inference latency into 80%. We also show a strong generalization ability of the proposed method to various out-of-distribution turbulent flow settings. Our code is available at "https://github.com/Edward-Sun/TSM-PDE"

    Exploring Robust Features for Improving Adversarial Robustness

    Full text link
    While deep neural networks (DNNs) have revolutionized many fields, their fragility to carefully designed adversarial attacks impedes the usage of DNNs in safety-critical applications. In this paper, we strive to explore the robust features which are not affected by the adversarial perturbations, i.e., invariant to the clean image and its adversarial examples, to improve the model's adversarial robustness. Specifically, we propose a feature disentanglement model to segregate the robust features from non-robust features and domain specific features. The extensive experiments on four widely used datasets with different attacks demonstrate that robust features obtained from our model improve the model's adversarial robustness compared to the state-of-the-art approaches. Moreover, the trained domain discriminator is able to identify the domain specific features from the clean images and adversarial examples almost perfectly. This enables adversarial example detection without incurring additional computational costs. With that, we can also specify different classifiers for clean images and adversarial examples, thereby avoiding any drop in clean image accuracy.Comment: 12 pages, 8 figure

    Quantum Federated Learning With Quantum Networks

    Full text link
    A major concern of deep learning models is the large amount of data that is required to build and train them, much of which is reliant on sensitive and personally identifiable information that is vulnerable to access by third parties. Ideas of using the quantum internet to address this issue have been previously proposed, which would enable fast and completely secure online communications. Previous work has yielded a hybrid quantum-classical transfer learning scheme for classical data and communication with a hub-spoke topology. While quantum communication is secure from eavesdrop attacks and no measurements from quantum to classical translation, due to no cloning theorem, hub-spoke topology is not ideal for quantum communication without quantum memory. Here we seek to improve this model by implementing a decentralized ring topology for the federated learning scheme, where each client is given a portion of the entire dataset and only performs training on that set. We also demonstrate the first successful use of quantum weights for quantum federated learning, which allows us to perform our training entirely in quantum

    Fast 2D Bicephalous Convolutional Autoencoder for Compressing 3D Time Projection Chamber Data

    Full text link
    High-energy large-scale particle colliders produce data at high speed in the order of 1 terabytes per second in nuclear physics and petabytes per second in high-energy physics. Developing real-time data compression algorithms to reduce such data at high throughput to fit permanent storage has drawn increasing attention. Specifically, at the newly constructed sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC), a time projection chamber is used as the main tracking detector, which records particle trajectories in a volume of a three-dimensional (3D) cylinder. The resulting data are usually very sparse with occupancy around 10.8%. Such sparsity presents a challenge to conventional learning-free lossy compression algorithms, such as SZ, ZFP, and MGARD. The 3D convolutional neural network (CNN)-based approach, Bicephalous Convolutional Autoencoder (BCAE), outperforms traditional methods both in compression rate and reconstruction accuracy. BCAE can also utilize the computation power of graphical processing units suitable for deployment in a modern heterogeneous high-performance computing environment. This work introduces two BCAE variants: BCAE++ and BCAE-2D. BCAE++ achieves a 15% better compression ratio and a 77% better reconstruction accuracy measured in mean absolute error compared with BCAE. BCAE-2D treats the radial direction as the channel dimension of an image, resulting in a 3x speedup in compression throughput. In addition, we demonstrate an unbalanced autoencoder with a larger decoder can improve reconstruction accuracy without significantly sacrificing throughput. Lastly, we observe both the BCAE++ and BCAE-2D can benefit more from using half-precision mode in throughput (76-79% increase) without loss in reconstruction accuracy. The source code and links to data and pretrained models can be found at https://github.com/BNL-DAQ-LDRD/NeuralCompression_v2
    • …
    corecore