4 research outputs found

    Analysing decadal-scale crescentic bar dynamics using satellite imagery: A case study at Anmok beach, South Korea

    Get PDF
    Understanding long-term sandbar dynamics can be crucial for informed coastal zone management, but is often hampered by data availability. To increase the number of sandbar observations available from bathymetric surveys, this study proposes and evaluates a method to manually extract the sandbar location using freely available satellite imagery for the case study of Anmok beach in South Korea. Validation of the satellite extracted sandbar locations against 9 in-situ measurements shows good agreement with errors well within the pixel resolution of the satellite imagery (i.e. 30 m for Landsat missions). The applicability of the method is constrained to locations where (1) the cross-shore crescentic length scales are larger than the image resolution, (2) frequent wave breaking and clouds are absent and (3) the water clarity is sufficient to enable the manual extraction of the sandbar crest line. Using the additional sandbar observations from the satellite imagery significantly increases the temporal extent and resolution of the dataset for Anmok beach. This allows the study of sandbar characteristics, dynamics and impacts of human interventions to an extent that would not have been possible without the satellite imagery. Within the study period 1990–2017 it is found that the sandbar maintains a persistent crescentic pattern that is only altered during prolonged and very intense storm conditions. The cumulative alongshore migration of the sandbars is investigated and found to be in the order of hundreds of meters over the 27 years study period. Comparing the sandbar characteristics prior and after the construction of Gangneung port shows that both the amplitudes and wavelengths of the sandbar crescents near the port have decreased after its construction.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Rivers, Ports, Waterways and Dredging EngineeringEnvironmental Fluid Mechanic

    Long-term bar dynamics using satellite imagery: A case study at Anmok beach, South Korea

    No full text
    Nearshore sandbar patterns can affect the hydrodynamics and, as a result, the beach morphodynamics in the nearshore zone. Hence, spatial and temporal variability in the sandbars can influence beach accretion and erosion. Understanding the variability of the sandbar system can therefore be crucial for informed coastal zone management. So far, the methods to study sandbar dynamics mainly include datasets of video observations or occasional bathymetric surveys. However, at most locations around the world, these types of data are not or only scarcely available. In this paper we present an alternative method to analyze long-term sandbar variability by means of freely available satellite imagery. These images are globally available since the 1980’s and, thus, have the potential to be applicable at any location in the world. Here, we will illustrate the methodology by means of a case study at Anmok beach at the South Korean East coast.Rivers, Ports, Waterways and Dredging EngineeringCoastal EngineeringEnvironmental Fluid Mechanic

    Performance evaluation of wave input reduction techniques for modeling inter-annual sandbar dynamics

    No full text
    In process-based numerical models, reducing the amount of input parameters, known as input reduction (IR), is often required to reduce the computational effort of these models and to enable long-term, ensemble predictions. Currently, a comprehensive performance assessment of IR-methods is lacking, which hampers guidance on selecting suitable methods and settings in practice. In this study, we investigated the performance of 10 IR-methods and 36 subvariants for wave climate reduction to model the inter-annual evolution of nearshore bars. The performance of reduced wave climates is evaluated by means of a brute force simulation based on the full climate. Additionally, we tested how the performance is affected by the number of wave conditions, sequencing, and duration of the reduced wave climate. We found that the Sediment Transport Bins method is the most promising method. Furthermore, we found that the resolution in directional space is more important for the performance than the resolution in wave height. The results show that a reduced wave climate with fewer conditions applied on a smaller timescale performs better in terms of morphology than a climate with more conditions applied on a longer timescale. The findings of this study can be applied as initial guidelines for selecting input reduction methods at other locations, in other models, or for other domains.Coastal EngineeringEnvironmental Fluid MechanicsRivers, Ports, Waterways and Dredging Engineerin
    corecore