39 research outputs found

    Data Decomposition and Spatial Mixture Modeling for Part Based Model

    Full text link
    Abstract. This paper presents a system of data decomposition and spa-tial mixture modeling for part based models. Recently, many enhanced part based models (with e.g., multiple features, more components or parts) have been proposed. Nevertheless, those enhanced models bring high computation cost together with the risk of over-fitting. To tackle this problem, we propose a data decomposition method for part based models which not only accelerates training and testing process but also improves the performance on average. Besides, the original part based model uses a strict rigid structural model to describe the distribution of each part location. It is not “deformable ” enough, especially for those instances with different viewpoints or poses in the same aspect ratio. To address this problem, we present a novel spatial mixture modeling method. The spatial mixture embedded model is then integrated into the proposed data decomposition framework. We evaluate our system on the challenging PASCAL VOC2007 and PASCAL VOC2010 datasets, demonstrating the state-of-the-art performance compared with other re-lated methods in terms of accuracy and efficiency.

    All-Trans-Retinoic Acid Suppresses Neointimal Hyperplasia and Inhibits Vascular Smooth Muscle Cell Proliferation and Migration via Activation of AMPK Signaling Pathway

    Get PDF
    The proliferation and migration of vascular smooth muscle cells (VSMC) is extensively involved in pathogenesis of neointimal hyperplasia. All-trans-retinoic acid (ATRA) is a natural metabolite of vitamin A. Here, we investigated the involvement of AMP-activated protein kinase (AMPK) in the anti-neointimal hyperplasia effects of ATRA. We found that treatment with ATRA significantly reduced neointimal hyperplasia in the left common carotid artery ligation mouse model. ATRA reduced the proliferation and migration of VSMC, A7r5 and HASMC cell lines. Our results also demonstrated that ATRA altered the expression of proliferation-related proteins, including CyclinD1, CyclinD3, CyclinA2, CDK2, CDK4, and CDK6 in VSMC. ATRA dose-dependently enhanced the phosphorylation level of AMPKα (Thr172) in the left common carotid artery of experimental mice. Also, the phosphorylation level of AMPKα in A7r5 and HASMC was significantly increased. In addition, ATRA dose-dependently reduced the phosphorylation levels of mTOR and mTOR target proteins p70 S6 kinase (p70S6K) and 4E-binding protein 1 (4EBP1) in A7r5 and HASMC. Notably, the inhibition of AMPKα by AMPK inhibitor (compound C) negated the protective effect of ATRA on VSMC proliferation in A7r5. Also, knockdown of AMPKα by siRNA partly abolished the anti-proliferative and anti-migratory effects of ATRA in HASMC. Molecular docking analysis showed that ATRA could dock to the agonist binding site of AMPK, and the binding energy between AMPK and ATRA was -7.91 kcal/mol. Molecular dynamics simulations showed that the binding of AMPK-ATRA was stable. These data demonstrated that ATRA might inhibit neointimal hyperplasia and suppress VSMC proliferation and migration by direct activation of AMPK and inhibition of mTOR signaling

    The Main Progress of Perovskite Solar Cells in 2020–2021

    Get PDF
    Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided

    Learning Relevance Restricted Boltzmann Machine for Unstructured Group Activity and Event Understanding

    Get PDF
    This work is jointly supported by National Basic Research Program of China (2012CB316300), National Natural Science Foundation of China (61525306, 61573354, 61135002, 61420106015), and Strategic Priority Research Program of the CAS (XDB02070100)

    VoIP Aggregation in Wireless Backhaul Networks

    No full text
    The newly emerging wireless backhaul network has fundamental difficulties in supporting Voice over IP (VoIP) applications due to the MAC overheads introduced by huge amounts of small packets. Packet aggregation is a promising approach to mitigate these overheads. However, previous approaches to such problems are often stringent, not adaptive to the change of channel conditions. They are operated by each TAP (Transit Access Point) separately without any coordination in the use of shared channels. As a result, they fail to ensure the VoIP quality in terms of delay and loss. The major contribution of this paper is the proposal of a coordinated aggregation algorithm, which is adaptive and distributed. By coordinating with neighboring TAPs, the proposed algorithm is able to assign an appropriate aggregation rate to each TAP, aiming at better channel utilization and lower packet loss and delay. We evaluate this design by comprehensive analysis and simulations. The simulation results show that our algorithm significantly improves the VoIP capacity in wireless backhaul networks and outperforms existing aggregation algorithms

    Hollow Mesoporous CeO2-Based Nanoenzymes Fabrication for Effective Synergistic Eradication of Malignant Breast Cancer via Photothermal–Chemodynamic Therapy

    No full text
    CeO2-based nanoenzymes present a very promising paradigm in cancerous therapy, as H2O2 can be effectively decomposed under the electron transmit between Ce3+ and Ce4+. However, the limitations of endogenous H2O2 and intracellular low Fenton-like reaction rate lead to single unsatisfied chemodynamic therapy (CDT) efficacy. Other therapeutic modalities combined with chemodynamic therapy are generally used to enhance the tumor eradiation efficacy. Here, we have synthesized a novel hollow pH-sensitive CeO2 nanoenzyme after a cavity is loaded with indocyanine green (ICG), as well as with surface modification of tumor targeting peptides, Arg-Gly-Asp (denoted as HCeO2@ICG-RGD), to successfully target tumor cells via αvβ3 recognition. Importantly, in comparison with single chemodynamic therapy, a large amount of reactive oxygen species in cytoplasm were induced by enhanced chemodynamic therapy with photothermal therapy (PTT). Furthermore, tumor cells were efficiently killed by a combination of photothermal and chemodynamic therapy, revealing that synergistic therapy was successfully constructed. This is mainly due to the precise delivery of ICG and release after HCeO2 decomposition in cytoplasm, in which effective hyperthermia generation was found under 808 nm laser irradiation. Meanwhile, our HCeO2@ICG-RGD can act as a fluorescent imaging contrast agent for an evaluation of tumor tissue targeting capability in vivo. Finally, we found that almost all tumors in HCeO2@ICG-RGD+laser groups were completely eradicated in breast cancer bearing mice, further proving the effective synergistic effect in vivo. Therefore, our novel CeO2-based PTT agents provide a proof-of-concept argumentation of tumor-precise multi-mode therapies in preclinical applications

    Feedback Convolutional Neural Network for Visual Localization and Segmentation

    No full text
    corecore