104 research outputs found

    Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture

    Full text link
    Buildingâ integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (STâ OPVs) that utilize a nonfullerene acceptorâ based nearâ infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cuâ Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an STâ OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored STâ OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d’Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.An efficient and neutral colored semitransparent organic photovoltaic cell (STâ OPV) is realized by utilizing a nearâ infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, highâ conductivity Cuâ Ag alloy electrode. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151812/1/adma201903173.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151812/2/adma201903173_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151812/3/adma201903173-sup-0001-S1.pd

    RANKL/RANK promotes the migration of gastric cancer cells by interacting with EGFR

    Get PDF
    BACKGROUND: The incidence and mortality rates of gastric cancer (GC) rank in top five among all malignant tumors. Chemokines and their receptor-signaling pathways reportedly play key roles in the metastasis of malignant tumor cells. Receptor activator of nuclear factor ÎşB ligand (RANKL) is a member of the tumor necrosis factor family, with strong chemokine-like effects. Some studies have pointed out that the RANKL/RANK pathway is vital for the metastasis of cancer cells, but the specific mechanisms in GC remain poorly understood. RESULTS: This study reports original findings in cell culture models and in patients with GC. Flow cytometry and western blotting analyses showed that RANK was expressed in BGC-823 and SGC-7901 cells in particular. Chemotaxis experiments and wound healing assay suggested that RANKL spurred the migration of GC cells. This effect was offset by osteoprotegerin (OPG), a decoy receptor for RANKL. RANKL contributed to the activation of human epidermal growth factor receptor (HER) family pathways. The lipid raft core protein, caveolin 1 (Cav-1), interacted with both RANK and human epidermal growth factor receptor-1(EGFR). Knockdown of Cav-1 blocked the activation of EGFR and cell migration induced by RANKL. Moreover, RANK-positive GC patients who displayed higher levels of EGFR expression had poor overall survival. CONCLUSIONS: In summary, we confirmed that with the promotion of RANKL, RANK and EGFR can form complexes with the lipid raft core protein Cav-1, which together promote GC cell migration. The formation of the RANK-Cav-1-EGFR complex provides a novel mechanism for the metastasis of GC. These observations warrant confirmation in independent studies, in vitro and in vivo. They also inform future drug target discovery research and innovation in the treatment of GC progression

    Isomeric Effects of Solution Processed Ladderâ Type Nonâ Fullerene Electron Acceptors

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138922/1/solr201700107_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138922/2/solr201700107-sup-0001-SuppData-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138922/3/solr201700107.pd

    Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Get PDF
    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∟1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica
    • …
    corecore