37 research outputs found

    Simultaneous Intrinsic and Extrinsic Parameter Identification of a Hand-Mounted Laser-Vision Sensor

    Get PDF
    In this paper, we propose a simultaneous intrinsic and extrinsic parameter identification of a hand-mounted laser-vision sensor (HMLVS). A laser-vision sensor (LVS), consisting of a camera and a laser stripe projector, is used as a sensor component of the robotic measurement system, and it measures the range data with respect to the robot base frame using the robot forward kinematics and the optical triangulation principle. For the optimal estimation of the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. Best-fit parameters, including both the intrinsic and extrinsic parameters of the HMLVS, are simultaneously obtained based on the least-squares criterion. From the simulation and experimental results, it is shown that the parameter identification problem considered was characterized by a highly multimodal landscape; thus, the global optimization technique such as a particle swarm optimization can be a promising tool to identify the model parameters for a HMLVS, while the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum. The proposed optimization method does not require good initial guesses of the system parameters to converge at a very stable solution and it could be applied to a kinematically dissimilar robot system without loss of generality

    Highly interconnected ordered mesoporous carbon-carbon nanotube nanocomposites: Pt-free, highly efficient, and durable counter electrodes for dye-sensitized solar cells

    Get PDF
    We report the preparation of highly interconnected ordered mesoporous carbon-carbon nanotube nanocomposites which show Pt-like dye-sensitized solar cell (DSSC) efficiency and remarkable long-term durability as DSSC counter electrodes.close413

    Stage-Dependent Changes of Visual Function and Electrical Response of the Retina in the rd10 Mouse Model

    Get PDF
    One of the critical prerequisites for the successful development of retinal prostheses is understanding the physiological features of retinal ganglion cells (RGCs) in the different stages of retinal degeneration (RD). This study used our custom-made rd10 mice, C57BL/6-Pde6bem1(R560C)Dkl/Korl mutated on the Pde6b gene in C57BL/6J mouse with the CRISPR/Cas9-based gene-editing method. We selected the postnatal day (P) 45, P70, P140, and P238 as representative ages for RD stages. The optomotor response measured the visual acuity across degeneration stages. At P45, the rd10 mice exhibited lower visual acuity than wild-type (WT) mice. At P140 and older, no optomotor response was observed. We classified RGC responses to the flashed light into ON, OFF, and ON/OFF RGCs via in vitro multichannel recording. With degeneration, the number of RGCs responding to the light stimulation decreased in all three types of RGCs. The OFF response disappeared faster than the ON response with older postnatal ages. We elicited RGC spikes with electrical stimulation and analyzed the network-mediated RGC response in the rd10 mice. Across all postnatal ages, the spikes of rd10 RGCs were less elicited by pulse amplitude modulation than in WT RGCs. The ratio of RGCs showing multiple peaks of spike burst increased in older ages. The electrically evoked RGC spikes by the pulse amplitude modulation differ across postnatal ages. Therefore, degeneration stage-dependent stimulation strategies should be considered for developing retinal prosthesis and successful vision restoration

    Photometric Selection of Unobscured QSOs in the Ecliptic Poles: KMTNet in the South Field and Pan-STARRS in the North Field

    Full text link
    We search for quasi-stellar objects (QSOs) in a wide area of the south ecliptic pole (SEP) field, which has been and will continue to be intensively explored through various space missions. For this purpose, we obtain deep broadband optical images of the SEP field covering an area of \sim14.5×14.514.5\times14.5 deg2^2 with the Korea Microlensing Telescope Network. The 5σ\sigma detection limits for point sources in the BVRIBVRI bands are estimated to be \sim22.59, 22.60, 22.98, and 21.85 mag, respectively. Utilizing data from Wide-field Infrared Survey Explorer, unobscured QSO candidates are selected among the optically point-like sources using the mid-infrared (MIR) and optical-MIR colors. To further refine our selection and eliminate any contamination not adequately removed by the color-based selection, we perform the spectral energy distribution fitting with archival photometric data ranging from optical to MIR. As a result, we identify a total of 2,383 unobscured QSO candidates in the SEP field. We also apply a similar method to the north ecliptic pole field using the Pan-STARRS data and obtain a similar result of identifying 2,427 candidates. The differential number count per area of our QSO candidates is in good agreement with those measured from spectroscopically confirmed ones in other fields. Finally, we compare the results with the literature and discuss how this work will be implicated in future studies, especially with the upcoming space missions.Comment: 14 pages, 9 figures, accepted for publication in ApJ

    Effect of sulphur vacancy on geometric and electronic structure of MoS2 induced by molecular hydrogen treatment at room temperature

    Get PDF
    Investigations into the interaction between molecular hydrogen and molybdenum disulphide have been in increasing demand to improve the understanding of the hydrodesulphurisation process, especially the creation of sulphur vacancies which result in coordinatively unsaturated sites in MoS 2. Here we present comprehensive studies of the structural and electronic modulation caused by exposure of MoS2 to H2 over a low temperature range, which may be helpful for industrial applications. Detail investigations were conducted with Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), and electrical transport properties as a function of H2 gas pressure up to 24 bar from 295 K to 350 K. Upon exposure to H2, we observed bond-softening using Raman spectroscopy, a decrease in d-spacing from the TEM results, and an increase in conductance, all of which are consistent with the first-principles calculations. The results demonstrate the formation of sulphur vacancies even under low H2 pressure at low temperature.close2

    Analysis of the b 1 meson decay in local tensor bilinear representation

    No full text
    Abstract We explore the validity of vector meson dominance in the radiative decay of the b 1(1235) meson. In order to explain the violation of the vector meson dominance hypothesis in this decay process, we investigate a model where the b 1 meson strongly couples with the local current in tensor bilinear representation. The tensor representation is investigated in the framework of the operator product expansion and we found a low energy decay process that does not follow the usual vector meson dominance hypothesis. The ω-like intermediate meson state of quantum numbers I G (J PC ) = 0−(1− −) is found to have a nontrivial role in the decay process of the b 1 meson. The spectral structure of the ω-like state is found to be close to a π-ρ hybrid state, which provides a mechanism that evades the usual vector meson dominance hypothesis. Precise measurements of various decay channels of the b 1 meson are, therefore, required to unravel the internal structure of axial vector mesons

    ITO-Ag NW based Transparent Quantum Dot Light Emitting Diode

    No full text
    corecore