122 research outputs found

    GW25-e1163 Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway

    Get PDF

    Facile Preparation of g-C3N4-WO3 Composite Gas Sensing Materials with Enhanced Gas Sensing Selectivity to Acetone

    Get PDF
    In this paper, g-C3N4-WO3 composite materials were prepared by hydrothermal processing. The composites were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption, respectively. The gas sensing properties of the composites were investigated. The results indicated that the addition of appropriate amount of g-C3N4 to WO3 could improve the response and selectivity to acetone. The sensor based on 2 wt% g-C3N4-WO3 composite showed the best gas sensing performances. When operating at optimum temperature of 310°C, the responses to 1000 ppm and 0.5 ppm acetone were 58.2 and 1.6, respectively, and the ratio of the S1000 ppm acetone to S1000 ppm ethanol reached 3.7

    A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition

    Get PDF
    Electroencephalography (EEG)-based emotion recognition is an important element in psychiatric health diagnosis for patients. However, the underlying EEG sensor signals are always non-stationary if they are sampled from different experimental sessions or subjects. This results in the deterioration of the classification performance. Domain adaptation methods offer an effective way to reduce the discrepancy of marginal distribution. However, for EEG sensor signals, both marginal and conditional distributions may be mismatched. In addition, the existing domain adaptation strategies always require a high level of additional computation. To address this problem, a novel strategy named adaptive subspace feature matching (ASFM) is proposed in this paper in order to integrate both the marginal and conditional distributions within a unified framework (without any labeled samples from target subjects). Specifically, we develop a linear transformation function which matches the marginal distributions of the source and target subspaces without a regularization term. This significantly decreases the time complexity of our domain adaptation procedure. As a result, both marginal and conditional distribution discrepancies between the source domain and unlabeled target domain can be reduced, and logistic regression (LR) can be applied to the new source domain in order to train a classifier for use in the target domain, since the aligned source domain follows a distribution which is similar to that of the target domain. We compare our ASFM method with six typical approaches using a public EEG dataset with three affective states: positive, neutral, and negative. Both offline and online evaluations were performed. The subject-to-subject offline experimental results demonstrate that our component achieves a mean accuracy and standard deviation of 80.46% and 6.84%, respectively, as compared with a state-of-the-art method, the subspace alignment auto-encoder (SAAE), which achieves values of 77.88% and 7.33% on average, respectively. For the online analysis, the average classification accuracy and standard deviation of ASFM in the subject-to-subject evaluation for all the 15 subjects in a dataset was 75.11% and 7.65%, respectively, gaining a significant performance improvement compared to the best baseline LR which achieves 56.38% and 7.48%, respectively. The experimental results confirm the effectiveness of the proposed method relative to state-of-the-art methods. Moreover, computational efficiency of the proposed ASFM method is much better than standard domain adaptation; if the numbers of training samples and test samples are controlled within certain range, it is suitable for real-time classification. It can be concluded that ASFM is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the field of EEG-based emotion recognition

    Molecularly soldered covalent organic frameworks for ultrafast precision sieving

    Get PDF

    The FOXO Transcription Factor Controls Insect Growth and Development by Regulating Juvenile Hormone Degradation in the Silkworm, \u3cem\u3eBombyx mori\u3c/em\u3e

    Get PDF
    Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO (BmFOXO) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori. In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development

    Achieving ultrahigh energy storage density in super relaxor BCZT-based lead-free capacitors through multiphase coexistence

    Get PDF
    Dielectric capacitors own great potential in next-generation energy storage devices for their fast charge-discharge time, while low energy storage capacity limits their commercialization. Enormous lead-free ferroelectric ceramic capacitor systems have been reported in recent decades, and energy storage density has increased rapidly. By comparing with some ceramic systems with fashioned materials or techniques, which lacks repeatability, as reported latterly, we proposed a unique but straightforward way to boost the energy storage capacity in a modified conventional ferroelectric system. Through stoichiometric ratio regulation, the coexistence of the C-phase and T-phase was obtained in 0.85(Ba1-xCax)(ZryTi1-y)O3-0.15BiSmO3-2 wt. % MnO ceramics with x = 0.1 and y = 0.15 under the proof of the combination of Rietveld XRD refinement and transmission electron microscope measurement. The Wrec of 3.90 J/cm3, an excellent value for BCZT-based ceramic at the present stage, was obtained because of the co-contribution of the optimization of electric field distribution and the additional interfacial polarization triggered at the higher electric fields. The finite element simulation and physical deduction, which fits very well with our experimental result, were also performed. As to the practical application, stable performance in a long-time cycle and frequency stability was obtained, and excellent discharge behaviors were also achieved.</p

    Use of albumin infusion for cirrhosis-related complications: An international position statement

    Get PDF
    Background & aims: Numerous studies have evaluated the role of human albumin (HA) in managing various liver cirrhosis-related complications. However, their conclusions remain partially controversial, probably because HA was evaluated in different settings, including indications, patient characteristics, and dosage and duration of therapy. Methods: Thirty-three investigators from 19 countries with expertise in the management of liver cirrhosis-related complications were invited to organise an International Special Interest Group. A three-round Delphi consensus process was conducted to complete the international position statement on the use of HA for treatment of liver cirrhosis-related complications. Results: Twelve clinically significant position statements were proposed. Short-term infusion of HA should be recommended for the management of hepatorenal syndrome, large volume paracentesis, and spontaneous bacterial peritonitis in liver cirrhosis. Its effects on the prevention or treatment of other liver cirrhosis-related complications should be further elucidated. Long-term HA administration can be considered in specific settings. Pulmonary oedema should be closely monitored as a potential adverse effect in cirrhotic patients receiving HA infusion. Conclusions: Based on the currently available evidence, the international position statement suggests the potential benefits of HA for the management of multiple liver cirrhosis-related complications and summarises its safety profile. However, its optimal timing and infusion strategy remain to be further elucidated.Impact and implications: Thirty-three investigators from 19 countries proposed 12 position statements on the use of human albumin (HA) infusion in liver cirrhosis-related complications. Based on current evidence, short-term HA infusion should be recommended for the management of HRS, LVP, and SBP; whereas, long-term HA administration can be considered in the setting where budget and logistical issues can be resolved. However, pulmonary oedema should be closely monitored in cirrhotic patients who receive HA infusion.info:eu-repo/semantics/publishedVersio
    corecore