15 research outputs found

    Effect of the 2010 task force criteria on reclassification of cardiovascular magnetic resonance criteria for arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Background: We sought to evaluate the effect of application of the revised 2010 Task Force Criteria (TFC) on the prevalence of major and minor Cardiovascular Magnetic Resonance (CMR) criteria for Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) versus application of the original 1994 TFC. We also assessed the utility of MRI to identify alternative diagnoses for patients referred for ARVC evaluation. Methods: 968 consecutive patients referred to our institution for CMR with clinical suspicion of ARVC from 1995 to 2010, were evaluated for the presence of major and minor CMR criteria per the 1994 and 2010 ARVC TFC. CMR criteria included right ventricle (RV) dilatation, reduced RV ejection fraction, RV aneurysm, or regional RV wall motion abnormalities. When quantitative measures of RV size and function were not available, and in whom abnormal size or function was reported, a repeat quantitative analysis by 2 qualified CMR physicians in consensus. Results: Of 968 patients, 220 (22.7%) fulfilled either a major or a minor 1994 TFC, and 25 (2.6%) fulfilled any of the 2010 TFC criterion. Among patients meeting any 1994 criteria, only 25 (11.4%) met at least one 2010 criterion. All patients who fulfilled a 2010 criteria also satisfied at least one 1994 criterion. Per the 2010 TFC, 21 (2.2%) patients met major criteria and 4 (0.4%) patients fulfilled at least one minor criterion. Eight patients meeting 1994 minor criteria were reclassified as satisfying 2010 major criteria, while 4 patients fulfilling 1994 major criteria were reclassified to only minor or no criteria under the 2010 TFC. Eighty-nine (9.2%) patients had alternative cardiac diagnoses, including 43 (4.4%) with clinically significant potential ARVC mimics. These included cardiac sarcoidosis, RV volume overload conditions, and other cardiomyopathies. Conclusions: Application of the 2010 TFC resulted in reduction of total patients meeting any diagnostic CMR criteria for ARVC from 22.7% to 2.6% versus the 1994 TFC. CMR identified alternative cardiac diagnoses in 9.2% of patients, and 4.4% of the diagnoses were potential mimics of ARVC

    Reference values of myocardial native T1 and extracellular volume in patients without structural heart disease and had negative 3T cardiac magnetic resonance adenosine stress test

    No full text
    Background: To establish the reference values of native T1 and extracellular volume (ECV) in patients without structural heart disease and had a negative adenosine stress 3T cardiac magnetic resonance. Methods: Short-axis T1 mapping images were acquired using a modified Look-Locker inversion recovery technique before and after administration of 0.15 mmol/kg gadobutrol to calculate both native T1 and ECV. To compare the agreement between measurement strategies, regions of interest (ROI) were drawn in all 16 segments then averaged to represent mean global native T1. Additionally, an ROI was drawn in the mid-ventricular septum on the same image to represent the mid-ventricular septal native T1. Results: Fifty-one patients (mean 65 years, 65 % women) were included. Mean global native T1 averaged from all 16 segments and a mid-ventricular septal native T1 were not significantly different (1221.2 ± 35.2 vs 1228.4 ± 43.7 ms, p = 0.21). Men had lower mean global native T1 (1195 ± 29.8 vs 1235.5 ± 29.4 ms, p < 0.001) than women. Both mean global and mid-ventricular septal native T1 were not correlated with age (r = 0.21, p = 0.13 and r = 0.18, p = 0.19, respectively). The calculated ECV was 26.6 ± 2.7 %, which was not influenced by either gender or age. Conclusions: We report the first study to validate the native T1 and ECV reference ranges, factors influencing T1, and the validation across measurement methods in older Asian patients without structural heart disease and had a negative adenosine stress test. These references allow for better detection of abnormal myocardial tissue characteristics in clinical practice
    corecore