1 research outputs found

    Efficient Ni<sub>2</sub>P/SiO<sub>2</sub> Catalysts with Enhanced Performance for the Hydrogenation of 4,6-Dimethyldibenzothiophene and Phenanthrene

    Full text link
    Highly dispersed Ni2P catalysts (Ni2P/SiO2-DPx) were prepared by reducing the passivation-free precursors, which were obtained through the phosphidation of nickel phyllosilicate with sodium hypophosphite. The strong metal–support interaction of nickel phyllosilicate and the mild phosphidation conditions prevented the agglomeration of Ni particles and resulted in a smaller Ni2P particle size. The superior catalytic performance of the as-prepared Ni2P/SiO2-DP catalysts was evaluated in hydrodesulfurization (HDS) of 4,6-dimethyldibenzothiophene and the hydrogenation of phenanthrene, in comparison with Ni2P/SiO2-IM and CoMoS/γ-Al2O3 prepared from a conventional incipient wetness impregnation method. The passivation-free Ni-P/SiO2-DPx precursors showed great storage stability, and Ni2P/SiO2-DP derived from the stored Ni-P/SiO2-DP precursors exhibited negligible loss of HDS activity. This method provides a potential preparation strategy for the industrial applications of transition metal phosphides without the temperature-programmed reduction and the subsequent passivation process
    corecore