1,177 research outputs found

    Automatic emotion perception using eye movement information for E-Healthcare systems.

    Get PDF
    Facing the adolescents and detecting their emotional state is vital for promoting rehabilitation therapy within an E-Healthcare system. Focusing on a novel approach for a sensor-based E-Healthcare system, we propose an eye movement information-based emotion perception algorithm by collecting and analyzing electrooculography (EOG) signals and eye movement video synchronously. Specifically, we extract the time-frequency eye movement features by firstly applying the short-time Fourier transform (STFT) to raw multi-channel EOG signals. Subsequently, in order to integrate time domain eye movement features (i.e., saccade duration, fixation duration, and pupil diameter), we investigate two feature fusion strategies: feature level fusion (FLF) and decision level fusion (DLF). Recognition experiments have been also performed according to three emotional states: positive, neutral, and negative. The average accuracies are 88.64% (the FLF method) and 88.35% (the DLF with maximal rule method), respectively. Experimental results reveal that eye movement information can effectively reflect the emotional state of the adolescences, which provides a promising tool to improve the performance of the E-Healthcare system.Anhui Provincial Natural Science Research Project of Colleges and Universities Fund under Grant KJ2018A0008, Open Fund for Discipline Construction under Grant Institute of Physical Science and Information Technology in Anhui University, and National Natural Science Fund of China under Grant 61401002

    Multifunctional Wound‐Dressing Composites Consisting of Polyvinyl Alcohol, Aloe Extracts and Quaternary Ammonium Chitosan Salt

    Get PDF
    Wound dressings are materials generally made of gauze, synthetic, and natural polymers that are able to protect wound from microorganism, absorb exudates, and provide compression to minimize edema as well as a temporary substrate for tissue cells to grow. The multifunction of wound dressing exhibiting antibacterial and anti‐inflammatory properties and conducive to skin‐tissue regeneration is highly desired. In this study, we developed such a multifunctional wound‐dressing composite consisting of polyvinyl alcohol, aloe extracts, and quaternary ammonium chitosan salt (PVA/AE/QCS, PAQ). The mass ratio of PAQ composites was controlled at three different levels of 6:3:1, 7:2:1, and 8:1:1. The as‐prepared PAQ composites exhibited a porous profile on both surface and cross‐section areas with 3–60‐Όm pore size and a three‐dimensional (3D) porous network inside. Such a porous structure could effectively prevent the invasion of microorganism, as well as readily absorb extrudes from wound. The PAQ composites exhibited a good competency of moisture maintenance, excellent antibacterial characteristics, and a good biocompatibility of fibroblasts, and they would become a competitive multifunctional wound dressing

    Exploring Gut Microbiota in Patients with Colorectal Disease Based on 16S rRNA Gene Amplicon and Shallow Metagenomic Sequencing

    Get PDF
    The gastrointestinal tract, the largest human microbial reservoir, is highly dynamic. The gut microbes play essential roles in causing colorectal diseases. In the present study, we explored potential keystone taxa during the development of colorectal diseases in central China. Fecal samples of some patients were collected and were allocated to the adenoma (Group A), colorectal cancer (Group C), and hemorrhoid (Group H) groups. The 16S rRNA amplicon and shallow metagenomic sequencing (SMS) strategies were used to recover the gut microbiota. Microbial diversities obtained from 16S rRNA amplicon and SMS data were similar. Group C had the highest diversity, although no significant difference in diversity was observed among the groups. The most dominant phyla in the gut microbiota of patients with colorectal diseases were Bacteroidetes, Firmicutes, and Proteobacteria, accounting for >95% of microbes in the samples. The most abundant genera in the samples were Bacteroides, Prevotella, and Escherichia/Shigella, and further species-level and network analyses identified certain potential keystone taxa in each group. Some of the dominant species, such as Prevotella copri, Bacteroides dorei, and Bacteroides vulgatus, could be responsible for causing colorectal diseases. The SMS data recovered diverse antibiotic resistance genes of tetracycline, macrolide, and beta-lactam, which could be a result of antibiotic overuse. This study explored the gut microbiota of patients with three different types of colorectal diseases, and the microbial diversity results obtained from 16S rRNA amplicon sequencing and SMS data were found to be similar. However, the findings of this study are based on a limited sample size, which warrants further large-scale studies. The recovery of gut microbiota profiles in patients with colorectal diseases could be beneficial for future diagnosis and treatment with modulation of the gut microbiota. Moreover, SMS data can provide accurate species- and gene-level information, and it is economical. It can therefore be widely applied in future clinical metagenomic studies

    Accreted seamounts in North Tianshan, NW China: implications for the evolution of the Central Asian Orogenic Belt

    Get PDF
    The Carboniferous Bayingou ophiolitic mĂ©lange is exposed in North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mĂ©lange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mĂ©lange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2–3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∌15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mĂ©lange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion
    • 

    corecore