455 research outputs found

    The development of regrind–flotation pre-treatment of the CIL feed in copper–gold plants

    Get PDF
    This study focused on the development of a new method, regrind-flotation pre-treatment, to improve the performance of the CIL (Carbon-in-Leach) circuit at copper-gold concentrators. Occlusion of gold by iron sulphide gangue minerals and the fine grain size of gold associated with them contribute to the low gold recovery in the CIL circuit. Fine grinding of the CIL feed increased gold recovery significantly from the leaching process. However, fine grinding increased the amount of liberated copper which is cyanide soluble resulting in significantly higher cyanide consumption. A proposed method of regrinding of the CIL feed followed by copper flotation was developed as an appropriate pre-treatment method for the CIL circuit that increased gold recovery while reducing cyanide consumption related to the presence of copper

    Synchronization of the secondary isolation system with a dual-motor excitation

    Get PDF
    A dynamical model is proposed in this paper to study the synchronization and stability of the secondary isolation system with a dual-motor excitation. After deducing the dynamic equations of the system by Lagrange’s equation, the Laplace transform is used to deduce the displacement responses of the system when the system operate in steady state. The synchronous balance equation and stability condition of the system is derived with average method, and the relationship between the coefficient of synchronous ability and the geometric parameters of the system is discussed. It can be found that synchronization ability of the system is gradually increased with the increase between two motors mounting distance; meanwhile the larger difference of the mass between the two unbalanced rotors, the more difficult to implement synchronous operation of the system. Moreover, the stable phase difference of the vibrating system being as the key determinant to reach synchronization is discussed numerically. The research result shows that the synchronous behavior of the system is influenced by rotation direction of the rotors, mounting position of two motors, and mass ratios between unbalanced rotors and vibrating body. The correctness of theoretical analyses is verified by simulation results with Runge-Kutta method

    SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery

    Get PDF
    Abstract With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying "from-to" change information simultaneously, is gaining growing attention in RS community. However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information. To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information. Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method

    Deciphering Charging Status, Absolute Quantum Efficiency, and Absorption Cross Section of MultiCarrier States in Single Colloidal Quantum Dot

    Full text link
    Upon photo- or electrical-excitation, colloidal quantum dots (QDs) are often found in multi-carrier states due to multi-photon absorption and photo-charging of the QDs. While many of these multi-carrier states are observed in single-dot spectroscopy, their properties are not well studied due to random charging/discharging, emission intensity intermittency, and uncontrolled surface defects of single QD. Here we report in-situ deciphering the charging status, and precisely assessing the absorption cross section, and determining the absolute emission quantum yield of mono-exciton and biexciton states for neutral, positively-charged, and negatively-charged single core/shell CdSe/CdS QD. We uncover very different photon statistics of the three charge states in single QD and unambiguously identify their charge sign together with the information of their photoluminescence decay dynamics. We then show their distinct photoluminescence saturation behaviors and evaluated the absolute values of absorption cross sections and quantum efficiencies of monoexcitons and biexcitons. We demonstrate that addition of an extra hole or electron in a QD changes not only its emission properties but also varies its absorption cross section

    Managing clay minerals in froth flotation—a critical review

    Get PDF
    Clay minerals are widely present in various ore deposits as gangue minerals. The processing of high-clay-content ores is becoming a significant challenge for the mining industry owing to the poor flotation performance caused by the presence of clay minerals. Different types of clay minerals are typically present in ore bodies, and they cause several detrimental effects to flotation that require different treatments. In this article, a comprehensive review of the studies on understanding and mitigating the negative effects of clay minerals in flotation is presented. It starts with a review of the classification and structures of clay minerals commonly occurring in ore deposits and their properties that determine the behavior of clay minerals in flotation. It is followed by a critical review of two main negative effects of clay minerals on flotation, the recent research findings mainly from The University of Queensland group. The first negative effect is the coating of clay minerals on the surface of valuable minerals that decreases the floatability of valuable minerals. The second negative effect is the formation of network structures in the slurry. Depending on the type and strength of the network structure, it can cause either high pulp viscosity or increased gangue entrainment, which reduces the flotation recovery and flotation product grade, respectively. In this section, the mechanisms and key factors behind each negative effect are presented and critically discussed. Then, the approaches and techniques developed to mitigate the different negative effects of clay minerals are reviewed. To conclude, future directions for a more complete understanding of mechanisms and problem solving are recommended

    The interaction between copper species and pyrite surfaces in copper cyanide solutions

    Get PDF
    The adsorption of copper ions and the formation of a copper sulfide phase on pyrite surfaces are of vital importance to alter the surface property of pyrite and determine its fate either to be rejected in the flotation of polymetallic sulfide ores or to be recovered in the flotation of pyritic gold ores. Cyanide and copper may co-exist in the process water with complicated speciation. The objective of this study is to understand the interaction between copper cyanide species and pyrite and clarify the possible adsorption of copper on pyrite surfaces from cyanide-bearing solutions. Surface-enhanced Raman spectroscopy and electrochemical measurements were used to determine the reaction products formed on pyrite surfaces. It was found that Cu(I)-bearing species were incorporated into pyrite, forming a CuS-like sulfide from copper cyanide solutions at a more oxidizing potential, while a Cu2S-like sulfide formed at a more reducing potential. The amount of copper deposited on pyrite was significantly improved at a more reducing potential at which the pyrite surface tended to be FeS-like. In addition, these Cu(I)-sulfides on pyrite surfaces were dissolved by cyanide-bearing species at a high CN/Cu ratio, compromising the total amount of copper uptake

    The effects of selective harvest on Japanese Spanish mackerel (Scomberomorus niphonius) phenotypic evolution

    Get PDF
    Japanese Spanish mackerel (Scomberomorus niphonius) is an important fish species in the China Seas with wide distribution, extensive migration, and high economic value. This species has been yielding high fisheries production despite experiencing continuously high fishing pressure and the conversion from gillnet to trawl harvesting. Meanwhile, changes in life-history traits have been observed, including earlier maturation and smaller size at age. Here, we build an individual-based eco-genetic model parameterized for Japanese Spanish mackerel to investigate the population’s response to different fishing scenarios (fishing by trawl or by gillnet). The model allows evolution of life-history processes including maturation, reproduction and growth. It also incorporates environmental variability, phenotypic plasticity, and density-dependent feedbacks. Our results show that different gear types can result in different responses of life-history traits and altered population dynamics. The population harvested by gillnet shows weaker response to fishing than that by trawl. When fishing ceases, gillnet-harvested population can recover to the pre-harvest level more easily than that harvested by trawl. The different responses of population growth rate and evolution to different fishing gears demonstrated in this study shed light on the sustainable management and utilization of Japanese Spanish mackerel in the over-exploited China Seas.publishedVersio

    Fractional Calculus Guidance Algorithm in a Hypersonic Pursuit-Evasion Game

    Get PDF
    Aiming at intercepting a hypersonic weapon in a hypersonic pursuit-evasion game, this paper presents a fractional calculus guidance algorithm based on a nonlinear proportional and differential guidance law. First, under the premise of without increasing the complexity degree of the guidance system against a hypersonic manoeuvering target, the principle that the differential signal of the line-of-sight rate is more sensitive to the target manoeuver than the line-of-sight rate is employed as the guidelines to design the guidance law. A nonlinear proportional and differential guidance law (NPDG) is designed by using the differential derivative of the line-of-sight rate from a nonlinear tracking differentiator. By using the differential definition of fractional calculus, on the basis of the NPDG, a fractional calculus guidance law (FCG) is proposed. According to relative motions between the interceptor and target, the guidance system stability condition with the FCG is given and quantitative values are also proposed for the parameters of the FCG. Under different target manoeuver conditions and noisy conditions, the interception accuracy and robustness of these two guidance laws are analysed. Numerical experimental results demonstrate that the proposed guidance algorithms effectively reduce the miss distance against target manoeuvers. Compared with the NPDG, a stronger robustness of the FCG is shown under noisy condition

    A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery

    Get PDF
    Peng Li, Donghua Liu, Lei Miao, Chunxi Liu, Xiaoli Sun, Yongjun Liu, Na ZhangSchool of Pharmaceutical Science, Shandong University, Jinan, Shandong, People’s Republic of ChinaBackground: The success of gene therapy asks for the development of multifunctional vectors that could overcome various gene delivery barriers, such as the cell membrane, endosomal membrane, and nuclear membrane. Layer-by-layer technique is an efficient method with easy operation which can be used for the assembly of multifunctional gene carriers. This work describes a pH-sensitive multifunctional gene vector that offered long circulation property but avoided the inhibition of tumor cellular uptake of gene carriers associated with the use of polyethylene glycol.Methods: Deoxyribonucleic acid (DNA) was firstly condensed with protamine into a cationic core which was used as assembly template. Then, additional layers of anionic DNA, cationic liposomes, and o-carboxymethyl-chitosan (CMCS) were alternately adsorbed onto the template via layer-by-layer technique and finally the multifunctional vector called CMCS-cationic liposome-coated DNA/protamine/DNA complexes (CLDPD) was constructed. For in vitro test, the cytotoxicity and transfection investigation was carried out on HepG2 cell line. For in vivo evaluation, CMCS-CLDPD was intratumorally injected into tumor-bearing mice and the tumor cells were isolated for fluorescence determination of transfection efficiency.Results: CMCS-CLDPD had ellipsoidal shapes and showed “core-shell” structure which showed stabilization property in serum and effective protection of DNA from nuclease degradation. In vitro and in vivo transfection results demonstrated that CMCS-CLDPD had pH-sensitivity and the outermost layer of CMCS fell off in the tumor tissue, which could not only protect CMCS-CLDPD from serum interaction but also enhance gene transfection efficiency.Conclusion: These results demonstrated that multifunctional CMCS-CLDPD had pH-sensitivity, which may provide a new approach for the antitumor gene delivery.Keywords: layer-by-layer, multifunctional nanovector, pH-sensitivity, gene deliver

    Design and simulation of a miniaturized tubular electro-thermal actuator

    Get PDF
    ABSTRACT Design and simulation of a new type of tubular steel electro-thermal actuator capable of vertical displacement is presented. The Tubular Thermal Actuator (TTA) consists of several multiple cascaded chevron-shaped structures, which are connected together by a top ring, as a platform to carry vertical displacement. The TTA is made from a 20 μm thick steel tube with an outer diameter of 1mm by laser micromachining technology. A finite element model was developed to simulate the behavior of the actuator and study the dominant heat transfer mode at this scale. The actuator could generate more than 7μm linear motion and 2 mN forces at the top ring. In order to avoid operating the tubular actuator at its natural resonant frequencies, modal analysis has also been conducted
    • …
    corecore