1,212 research outputs found

    Bayesian Approach for Linear Optics Correction

    Full text link
    With a Bayesian approach, the linear optics correction algorithm for storage rings is revisited. Starting from the Bayes' theorem, a complete linear optics model is simplified as "likelihood functions" and "prior probability distributions". Under some assumptions, the least square algorithm and then the Jacobian matrix approach can be re-derived. The coherence of the correction algorithm is ensured through specifying a self-consistent regularization coefficient to prevent overfitting. Optimal weights for different correction objectives are obtained based on their measurement noise level. A new technique has been developed to resolve degenerated quadrupole errors when observed at a few select BPMs. A necessary condition of being distinguishable is that their optics response vectors seen at these specific BPMs should be near-orthogonal.Comment: 6 pages, 6 figure

    Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom-atom interactions

    Full text link
    Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C6C_6, C8C_8 and C10C_{10} atom-atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations
    corecore