28 research outputs found

    The translational network for metabolic disease ā€“ from protein interaction to disease co-occurrence

    Get PDF
    Background The recent advances in human disease network have provided insights into establishing the relationships between the genotypes and phenotypes of diseases. In spite of the great progress, it yet remains as only a map of topologies between diseases, but not being able to be a pragmatic diagnostic/prognostic tool in medicine. It can further evolve from a map to a translational tool if it equips with a function of scoring that measures the likelihoods of the association between diseases. Then, a physician, when practicing on a patient, can suggest several diseases that are highly likely to co-occur with a primary disease according to the scores. In this study, we propose a method of implementing n-of-1 utility (n potential diseases of one patient) to human disease networkā€”the translational disease network. Results We first construct a disease network by introducing the notion of walk in graph theory to protein-protein interaction network, and then provide a scoring algorithm quantifying the likelihoods of disease co-occurrence given a primary disease. Metabolic diseases, that are highly prevalent but have found only a few associations in previous studies, are chosen as entries of the network. Conclusions The proposed method substantially increased connectivity between metabolic diseases and provided scores of co-occurring diseases. The increase in connectivity turned the disease network info-richer. The result lifted the AUC of random guessing up to 0.72 and appeared to be concordant with the existing literatures on disease comorbidity

    Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks

    Get PDF
    Background Computational drug repurposing is crucial for identifying candidate therapeutic medications to address the urgent need for developing treatments for newly emerging infectious diseases. The recent COVID-19 pandemic has taught us the importance of rapidly discovering candidate drugs and providing them to medical and pharmaceutical experts for further investigation. Network-based approaches can provide repurposable drugs quickly by leveraging comprehensive relationships among biological components. However, in a case of newly emerging disease, applying a repurposing methods with only pre-existing knowledge networks may prove inadequate due to the insufficiency of information flow caused by the novel nature of the disease. Methods We proposed a network-based complementary linkage method for drug repurposing to solve the lack of incoming new disease-specific information in knowledge networks. We simulate our method under the controlled repurposing scenario that we faced in the early stage of the COVID-19 pandemic. First, the disease-gene-drug multi-layered network was constructed as the backbone network by fusing comprehensive knowledge database. Then, complementary information for COVID-19, containing data on 18 comorbid diseases and 17 relevant proteins, was collected from publications or preprint servers as of May 2020. We estimated connections between the novel COVID-19 node and the backbone network to construct a complemented network. Network-based drug scoring for COVID-19 was performed by applying graph-based semi-supervised learning, and the resulting scores were used to validate prioritized drugs for population-scale electronic health records-based medication analyses. Results The backbone networks consisted of 591 diseases, 26,681 proteins, and 2,173 drug nodes based on pre-pandemic knowledge. After incorporating the 35 entities comprised of complemented information into the backbone network, drug scoring screened top 30 potential repurposable drugs for COVID-19. The prioritized drugs were subsequently analyzed in electronic health records obtained from patients in the Penn Medicine COVID-19 Registry as of October 2021 and 8 of these were found to be statistically associated with a COVID-19 phenotype. Conclusion We found that 8 of the 30 drugs identified by graph-based scoring on complemented networks as potential candidates for COVID-19 repurposing were additionally supported by real-world patient data in follow-up analyses. These results show that our network-based complementary linkage method and drug scoring algorithm are promising strategies for identifying candidate repurposable drugs when new emerging disease outbreaks.This work was supported by the National Institutes of Health [R01 AG071470]

    An inference method from multi-layered structure of biomedical data

    No full text
    Abstract Background Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. Methods To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. Results The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. Conclusion This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system

    Cascade recurring deep networks for audible range prediction

    No full text
    Abstract Background Hearing Aids amplify sounds at certain frequencies to help patients, who have hearing loss, to improve the quality of life. Variables affecting hearing improvement include the characteristics of the patientsā€™ hearing loss, the characteristics of the hearing aids, and the characteristics of the frequencies. Although the two former characteristics have been studied, there are only limited studies predicting hearing gain, after wearing Hearing Aids, with utilizing all three characteristics. Therefore, we propose a new machine learning algorithm that can present the degree of hearing improvement expected from the wearing of hearing aids. Methods The proposed algorithm consists of cascade structure, recurrent structure and deep network structure. For cascade structure, it reflects correlations between frequency bands. For recurrent structure, output variables in one particular network of frequency bands are reused as input variables for other networks. Furthermore, it is of deep network structure with many hidden layers. We denote such networks as cascade recurring deep network where training consists of two phases; cascade phase and tuning phase. Results When applied to medical records of 2,182 patients treated for hearing loss, the proposed algorithm reduced the error rate by 58% from the other neural networks. Conclusions The proposed algorithm is a novel algorithm that can be utilized for signal or sequential data. Clinically, the proposed algorithm can serve as a medical assistance tool that fulfill the patientsā€™ satisfaction
    corecore