3 research outputs found

    Hammer Impact-Driven Power Generator Using Buzzer-Type Piezoelectric Energy Converter for Wind Power Generator Applications

    No full text
    A novel hammer-impact-driven power generator that uses a buzzer-type piezoelectric energy converter (BPEC) for wind-power-generator applications was designed, and the dynamic motions and output characteristics were analyzed. As the active material, Sm0.025-Pb0.9625[(Mg1/3Nb2/3)0.71Ti0.29]O3 (Sm-PMN-PT)ceramic was used; this material has a high piezoelectric charge constant of 1100 pC/N and an electromechanical coupling factor of 58%. A rotational impeller triggered an impact between one end of the bar-type hammer, and, thereby, impact energy transferred to the BPECs. The manufactured power generator was tested from 50 RPM to 250 RPM, using the handmade evaluation system; it was able to operate with small impact force and greatly improved output performance as rotation speed increased. The maximum output of the generator was 10.4 W at a load resistance of 500 Ω and rotation speed of 250 RPM. For improvement of the output characteristics, the generators were arranged such that they could operate simultaneously. Moreover, the proposed model was applied to a Savonius–Darrieus turbine, and the output performance was evaluated at various wind conditions in a wind tunnel

    Horizontally Assembled Trapezoidal Piezoelectric Cantilevers Driven by Magnetic Coupling for Rotational Energy Harvester Applications

    No full text
    Horizontally assembled trapezoidal piezoelectric cantilevers driven by magnetic coupling were fabricated for rotational energy harvester applications. A dodecagonal rigid frame with an attached array of six trapezoidal cantilevers served as a stator for electrical power generation. A rotor disk with six permanent magnets (PMs) interacted magnetically with the counterpart cantilever’s tip-mass PMs of the stator by rotational motion. Each trapezoidal piezoelectric cantilever beam was designed to operate in a transverse mode that utilizes a planar Ag/Pd electrode printed onto lead zirconate titanate (PZT) piezoelectric thick film. The optimized distance between a pair of PMs of the rotor and the stator was evaluated as approximately 10 mm along the same vertical direction to make the piezoelectric cantilever beam most deflectable without the occurrence of cracks. The theoretically calculated resistance torque was maximized at 46 mN·m for the optimized trapezoidal piezoelectric cantilever. The proposed energy harvester was also demonstrated for wind energy harvester applications. Its harvested output power reached a maximum of approximately 22 mW at a wind speed of 10 m/s under a resistive load of 30 kΩ. The output performance of the proposed energy harvester makes it possible to power numerous low-power applications such as smart sensor systems
    corecore