319 research outputs found
Sub-channel Assignment, Power Allocation and User Scheduling for Non-Orthogonal Multiple Access Networks
In this paper, we study the resource allocation and user scheduling problem
for a downlink nonorthogonal multiple access network where the base station
allocates spectrum and power resources to a set of users. We aim to jointly
optimize the sub-channel assignment and power allocation to maximize the
weighted total sum-rate while taking into account user fairness. We formulate
the sub-channel allocation problem as equivalent to a many-to-many two-sided
user-subchannel matching game in which the set of users and sub-channels are
considered as two sets of players pursuing their own interests. We then propose
a matching algorithm which converges to a two-side exchange stable matching
after a limited number of iterations. A joint solution is thus provided to
solve the sub-channel assignment and power allocation problems iteratively.
Simulation results show that the proposed algorithm greatly outperforms the
orthogonal multiple access scheme and a previous non-orthogonal multiple access
scheme.Comment: Accepted as a regular paper by IEEE Transactions on Wireless
Communication
Simultaneous Bidirectional Link Selection in Full Duplex MIMO Systems
In this paper, we consider a point to point full duplex (FD) MIMO
communication system. We assume that each node is equipped with an arbitrary
number of antennas which can be used for transmission or reception. With FD
radios, bidirectional information exchange between two nodes can be achieved at
the same time. In this paper we design bidirectional link selection schemes by
selecting a pair of transmit and receive antenna at both ends for
communications in each direction to maximize the weighted sum rate or minimize
the weighted sum symbol error rate (SER). The optimal selection schemes require
exhaustive search, so they are highly complex. To tackle this problem, we
propose a Serial-Max selection algorithm, which approaches the exhaustive
search methods with much lower complexity. In the Serial-Max method, the
antenna pairs with maximum "obtainable SINR" at both ends are selected in a
two-step serial way. The performance of the proposed Serial-Max method is
analyzed, and the closed-form expressions of the average weighted sum rate and
the weighted sum SER are derived. The analysis is validated by simulations.
Both analytical and simulation results show that as the number of antennas
increases, the Serial-Max method approaches the performance of the
exhaustive-search schemes in terms of sum rate and sum SER
Source and Physical-Layer Network Coding for Correlated Two-Way Relaying
In this paper, we study a half-duplex two-way relay channel (TWRC) with
correlated sources exchanging bidirectional information. In the case, when both
sources have the knowledge of correlation statistics, a source compression with
physical-layer network coding (SCPNC) scheme is proposed to perform the
distributed compression at each source node. When only the relay has the
knowledge of correlation statistics, we propose a relay compression with
physical-layer network coding (RCPNC) scheme to compress the bidirectional
messages at the relay. The closed-form block error rate (BLER) expressions of
both schemes are derived and verified through simulations. It is shown that the
proposed schemes achieve considerable improvements in both error performance
and throughput compared with the conventional non-compression scheme in
correlated two-way relay networks (CTWRNs).Comment: 15 pages, 6 figures. IET Communications, 201
V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks
Benefited from the widely deployed infrastructure, the LTE network has
recently been considered as a promising candidate to support the
vehicle-to-everything (V2X) services. However, with a massive number of devices
accessing the V2X network in the future, the conventional OFDM-based LTE
network faces the congestion issues due to its low efficiency of orthogonal
access, resulting in significant access delay and posing a great challenge
especially to safety-critical applications. The non-orthogonal multiple access
(NOMA) technique has been well recognized as an effective solution for the
future 5G cellular networks to provide broadband communications and massive
connectivity. In this article, we investigate the applicability of NOMA in
supporting cellular V2X services to achieve low latency and high reliability.
Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed
to tackle the technical hurdles in designing high spectral efficient scheduling
and resource allocation schemes in the ultra dense topology. We then extend it
to a more general V2X broadcasting system. Other NOMA-based extended V2X
applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin
Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage
With the rapid growth of demand for ever-increasing data rate, spectrum
resources have become more and more scarce. As a promising technique to
increase the efficiency of the spectrum utilization, cognitive radio (CR)
technique has the great potential to meet such a requirement by allowing
un-licensed users to coexist in licensed bands. In conventional CR systems, the
spectrum sensing is performed at the beginning of each time slot before the
data transmission. This unfortunately results in two major problems: 1)
transmission time reduction due to sensing, and 2) sensing accuracy impairment
due to data transmission. To tackle these problems, in this paper we present a
new design paradigm for future CR by exploring the full-duplex (FD) techniques
to achieve the simultaneous spectrum sensing and data transmission. With FD
radios equipped at the secondary users (SUs), SUs can simultaneously sense and
access the vacant spectrum, and thus, significantly improve sensing
performances and meanwhile increase data transmission efficiency. The aim of
this article is to transform the promising conceptual framework into the
practical wireless network design by addressing a diverse set of challenges
such as protocol design and theoretical analysis. Several application scenarios
with FD enabled CR are elaborated, and key open research directions and novel
algorithms in these systems are discussed
- …