85 research outputs found

    Bilinear Graph Neural Network with Neighbor Interactions

    Full text link
    Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data. Existing efforts on GNN have largely defined the graph convolution as a weighted sum of the features of the connected nodes to form the representation of the target node. Nevertheless, the operation of weighted sum assumes the neighbor nodes are independent of each other, and ignores the possible interactions between them. When such interactions exist, such as the co-occurrence of two neighbor nodes is a strong signal of the target node's characteristics, existing GNN models may fail to capture the signal. In this work, we argue the importance of modeling the interactions between neighbor nodes in GNN. We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes. We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes. In particular, we specify two BGNN models named BGCN and BGAT, based on the well-known GCN and GAT, respectively. Empirical results on three public benchmarks of semi-supervised node classification verify the effectiveness of BGNN -- BGCN (BGAT) outperforms GCN (GAT) by 1.6% (1.5%) in classification accuracy.Codes are available at: https://github.com/zhuhm1996/bgnn.Comment: Accepted by IJCAI 2020. SOLE copyright holder is IJCAI (International Joint Conferences on Artificial Intelligence), all rights reserve

    How to Retrain Recommender System? A Sequential Meta-Learning Method

    Full text link
    Practical recommender systems need be periodically retrained to refresh the model with new interaction data. To pursue high model fidelity, it is usually desirable to retrain the model on both historical and new data, since it can account for both long-term and short-term user preference. However, a full model retraining could be very time-consuming and memory-costly, especially when the scale of historical data is large. In this work, we study the model retraining mechanism for recommender systems, a topic of high practical values but has been relatively little explored in the research community. Our first belief is that retraining the model on historical data is unnecessary, since the model has been trained on it before. Nevertheless, normal training on new data only may easily cause overfitting and forgetting issues, since the new data is of a smaller scale and contains fewer information on long-term user preference. To address this dilemma, we propose a new training method, aiming to abandon the historical data during retraining through learning to transfer the past training experience. Specifically, we design a neural network-based transfer component, which transforms the old model to a new model that is tailored for future recommendations. To learn the transfer component well, we optimize the "future performance" -- i.e., the recommendation accuracy evaluated in the next time period. Our Sequential Meta-Learning(SML) method offers a general training paradigm that is applicable to any differentiable model. We demonstrate SML on matrix factorization and conduct experiments on two real-world datasets. Empirical results show that SML not only achieves significant speed-up, but also outperforms the full model retraining in recommendation accuracy, validating the effectiveness of our proposals. We release our codes at: https://github.com/zyang1580/SML.Comment: Appear in SIGIR 202

    Explainable Sparse Knowledge Graph Completion via High-order Graph Reasoning Network

    Full text link
    Knowledge Graphs (KGs) are becoming increasingly essential infrastructures in many applications while suffering from incompleteness issues. The KG completion task (KGC) automatically predicts missing facts based on an incomplete KG. However, existing methods perform unsatisfactorily in real-world scenarios. On the one hand, their performance will dramatically degrade along with the increasing sparsity of KGs. On the other hand, the inference procedure for prediction is an untrustworthy black box. This paper proposes a novel explainable model for sparse KGC, compositing high-order reasoning into a graph convolutional network, namely HoGRN. It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability while maintaining the model's effectiveness and efficiency. There are two main components that are seamlessly integrated for joint optimization. First, the high-order reasoning component learns high-quality relation representations by capturing endogenous correlation among relations. This can reflect logical rules to justify a broader of missing facts. Second, the entity updating component leverages a weight-free Graph Convolutional Network (GCN) to efficiently model KG structures with interpretability. Unlike conventional methods, we conduct entity aggregation and design composition-based attention in the relational space without additional parameters. The lightweight design makes HoGRN better suitable for sparse settings. For evaluation, we have conducted extensive experiments-the results of HoGRN on several sparse KGs present impressive improvements (9% MRR gain on average). Further ablation and case studies demonstrate the effectiveness of the main components. Our codes will be released upon acceptance.Comment: The manuscript under revie

    Context-Aware Visual Policy Network for Fine-Grained Image Captioning

    Full text link
    With the maturity of visual detection techniques, we are more ambitious in describing visual content with open-vocabulary, fine-grained and free-form language, i.e., the task of image captioning. In particular, we are interested in generating longer, richer and more fine-grained sentences and paragraphs as image descriptions. Image captioning can be translated to the task of sequential language prediction given visual content, where the output sequence forms natural language description with plausible grammar. However, existing image captioning methods focus only on language policy while not visual policy, and thus fail to capture visual context that are crucial for compositional reasoning such as object relationships (e.g., "man riding horse") and visual comparisons (e.g., "small(er) cat"). This issue is especially severe when generating longer sequences such as a paragraph. To fill the gap, we propose a Context-Aware Visual Policy network (CAVP) for fine-grained image-to-language generation: image sentence captioning and image paragraph captioning. During captioning, CAVP explicitly considers the previous visual attentions as context, and decides whether the context is used for the current word/sentence generation given the current visual attention. Compared against traditional visual attention mechanism that only fixes a single visual region at each step, CAVP can attend to complex visual compositions over time. The whole image captioning model -- CAVP and its subsequent language policy network -- can be efficiently optimized end-to-end by using an actor-critic policy gradient method. We have demonstrated the effectiveness of CAVP by state-of-the-art performances on MS-COCO and Stanford captioning datasets, using various metrics and sensible visualizations of qualitative visual context.Comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI). Extended version of "Context-Aware Visual Policy Network for Sequence-Level Image Captioning", ACM MM 2018 (arXiv:1808.05864

    Promoting Generalization for Exact Solvers via Adversarial Instance Augmentation

    Full text link
    Machine learning has been successfully applied to improve the efficiency of Mixed-Integer Linear Programming (MILP) solvers. However, the learning-based solvers often suffer from severe performance degradation on unseen MILP instances -- especially on large-scale instances from a perturbed environment -- due to the limited diversity of training distributions. To tackle this problem, we propose a novel approach, which is called Adversarial Instance Augmentation and does not require to know the problem type for new instance generation, to promote data diversity for learning-based branching modules in the branch-and-bound (B&B) Solvers (AdaSolver). We use the bipartite graph representations for MILP instances and obtain various perturbed instances to regularize the solver by augmenting the graph structures with a learned augmentation policy. The major technical contribution of AdaSolver is that we formulate the non-differentiable instance augmentation as a contextual bandit problem and adversarially train the learning-based solver and augmentation policy, enabling efficient gradient-based training of the augmentation policy. To the best of our knowledge, AdaSolver is the first general and effective framework for understanding and improving the generalization of both imitation-learning-based (IL-based) and reinforcement-learning-based (RL-based) B&B solvers. Extensive experiments demonstrate that by producing various augmented instances, AdaSolver leads to a remarkable efficiency improvement across various distributions
    corecore