81 research outputs found

    Subtype-Based Analysis of Cell-in-Cell Structures in Esophageal Squamous Cell Carcinoma

    Get PDF
    Cell-in-cell (CIC) structures are defined as the special structures with one or more cells enclosed inside another one. Increasing data indicated that CIC structures were functional surrogates of complicated cell behaviors and prognosis predictor in heterogeneous cancers. However, the CIC structure profiling and its prognostic value have not been reported in human esophageal squamous cell Carcinoma (ESCC). We conducted the analysis of subtyped CIC-based profiling in ESCC using “epithelium-macrophage-leukocyte” (EML) multiplex staining and examined the prognostic value of CIC structure profiling through Kaplan-Meier plotting and Cox regression model. Totally, five CIC structure subtypes were identified in ESCC tissue and the majority of them was homotypic CIC (hoCIC) with tumor cells inside tumor cells (TiT). By univariate and multivariate analyses, TiT was shown to be an independent prognostic factor for resectable ESCC, and patients with higher density of TiT tended to have longer post-operational survival time. Furthermore, in subpopulation analysis stratified by TNM stage, high TiT density was associated with longer overall survival (OS) in patients of TNM stages III and IV as compared with patients with low TiT density (mean OS: 51 vs 15 months, P = 0.04) and T3 stage (mean OS: 57 vs 17 months, P=0.024). Together, we reported the first CIC structure profiling in ESCC and explored the prognostic value of subtyped CIC structures, which supported the notion that functional pathology with CIC structure profiling is an emerging prognostic factor for human cancers, such as ESCC

    Double-pore structure porous Mo–Si–B intermetallics fabricated by elemental powder metallurgy method using NH4HCO3 as pore-forming agent

    No full text
    The multiphase porous intermetallic compounds Mo _3 Si-Mo _5 Si _3 -Mo _5 SiB _2 of a double-pore structure has been successfully fabricated by combining the in situ reaction synthesis with the pore-forming agent method. The effects of NH _4 HCO _3 content and size on porosity, pore diameter distribution, permeability, and compressive strength were investigated systematically. The results show that: with the NH _4 HCO _3 increasing from 0 to 60 vol%, the total porosity increases from 46.6% to 73.2%, the big pores volume increases from 2.3% to 69.4%, the gas permeability increases from 5.34 × 10 ^−7 l/(min · cm ^2  · Pa) to 1.74 × 10 ^−4 l/(min · cm ^2  · Pa), and the compressive strength decreases from 392 MPa to 14.8 MPa; on the other side, with the NH _4 HCO _3 size increased from 48 μ m to 230 μ m, the parameters of this porous intermetallics changed slightly except to the significant increase of big pores diameter. An exponential equation of σ _c  =  σ _s (1- ρ ) ^1/0.254 based on generalized mixture rule (GMR) has been put forward to quantitatively describe porosity-compressive strength behaviors. Results from this study indicate the potential applications in various filtration environments by tailoring the shape, contents, and size of the pore-forming agent

    Flexible Electronics, Theory and Method of Structural Design

    No full text
    Flexible electronics are electronics that can be stretched, bent, twisted, and deformed into arbitrary shapes. They break through the bottleneck and monopoly of traditional, rigid IC technologies and represent the next-generation electronics. This book provides an overview of the underlying theory and method of structural design for flexible electronics. Compared to intrinsically flexible and stretchable materials, structural engineering has proven its unique advantages, e.g. stretchable inorganic electronics. Based on the mechanical mechanisms, this book discusses the main structural deformation behaviors of flexible electronics, including mechanics of film-on-substrate and fiber-on-substrate, self-similar design with/without substrate, conformal design on rigid/soft substrate, purely in-plane design of serpentine interconnect with/without substrate, buckling-driven self-assembly and kirigami assembly strategies, neutral layer design, and the new materials-based structure design like liquid metals, etc. Moreover, the related advanced fabrication technology, the devices designs and applications of flexible electronics are also presented. The comprehensive and in-depth content makes this book can be used as a reference book for experienced researchers, as well as a teaching material for graduate students

    Electromechanical Design of Self-Similar Inspired Surface Electrodes for Human-Machine Interaction

    No full text
    Stable acquisition of electromyography (EMG)/electrocardiograph (ECG) signal is critical and challenging in dynamic human-machine interaction. Here, self-similar inspired configuration is presented to design surface electrodes with high mechanical adaptability (stretchability and conformability with skin) and electrical sensitivity/stability which are usually a pair of paradoxes. Mechanical and electrical coupling optimization strategies are proposed to optimize the surface electrodes with the 2nd-order self-similar serpentine configuration. It is devoted the relationship between the geometric shape parameters (height-space ratio η, scale factor β, and line width w), the areal coverage α, and mechanical adaptability, based on which an open network-shaped electrode is designed to stably collect high signal-to-noise ratio signals. The theoretical and experimental results show that the electrodes can be stretched > 30% and conform with skin wrinkle. The interfacial strength of electrode and skin is measured by homemade peeling test experiment platform. The surface electrodes with different line widths are used to record ECG signals for validating the electrical stability. Conformability reduces background noises and motion artifacts which provides stable recording of ECG/EMG signals. Further, the thin, stretchable electrodes are mounted on the human epidermis for continuous, stable biopotential signal records which suggests the way to high-performance electrodes in human-machine interaction

    Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing

    No full text
    Electrohydrodynamic jet (e-jet) printing has very promising applications due to its high printing resolution and material compatibility. It is necessary to know how to choose the printing parameters to get the right ejection volume. The previous scaling law of the ejection volume in e-jet printing borrows the scaling law of the ejection volume of an unstable isolated droplet charged to the Rayleigh limit. The influence of viscosity, applied voltage amplitude, and nozzle-to-substrate distance on the ejection volume in e-jet printing was not taken into account in the scaling law. This study investigated the influence of viscosity, conductivity, applied voltage, and nozzle-to-substrate distance on the ejection volume. The ejection volume increases with viscosity and decreases with applied voltage and nozzle-to-substrate distance. The average electric field was kept unchanged while changing the nozzle-to-substrate distance by changing the applied voltage according to the electric field model of a semi-infinite wire perpendicular to an infinite large planar counter electrode. The ejection volume decreases with conductivity as V ~ K − 0.6 , which is different from the previous scaling law, which concludes that V ~ K − 1 . Finally, a model about the relation between the ejection volume and four parameters was established by regression analysis using a third-order polynomial. Two more experiments were done, and the predicted results of the fitted model accorded well with the experiments. The model can be used to choose the ink properties and process parameters to get the right ejection volume

    Cohesive failure analysis of an array of IC chips bonded to a stretched substrate

    Get PDF
    AbstractThe paper presents a mechanical model for predicting the cohesive failure of a periodic array of integrated circuit (IC) chips adhesively bonded to a stretched substrate. A unit cell of the layered structure consisting of the IC chips, adhesive layer, and substrate is modeled as an assembly of two elastic Timoshenko beams, representing the chip and substrate, connected by an elastic interface, representing the adhesive. Accordingly, the stresses and energy release rate (ERR) in the adhesive layer – responsible for the premature cracking of the adhesive and debonding of the IC chips – are identified with the corresponding quantities computed for the elastic interface. Expressions for the adhesive stresses and ERR are given in terms of geometrical dimensions and material properties, combined with integration constants obtained numerically via the multi-segment analysis method. For comparison, the stresses in the adhesive are also computed based on a finite element model, and the ERR is evaluated using the virtual crack-closure technique (VCCT). The analytical predictions and numerical results match fairly well, considering the effects of key factors, such as the distance between adjacent chips, the chip size, the material properties of adhesive and substrate. The interaction between the chips is shown to have relevant effects on the adhesive stresses. In particular, only the mode II contributes to the ERR which increases with the ratio of the chip size to the distance between the chips and with the compliance of the adhesive and substrate layers
    corecore