1,992 research outputs found

    Geomagnetic field influences probabilistic abstract decision-making in humans

    Full text link
    To resolve disputes or determine the order of things, people commonly use binary choices such as tossing a coin, even though it is obscure whether the empirical probability equals to the theoretical probability. The geomagnetic field (GMF) is broadly applied as a sensory cue for various movements in many organisms including humans, although our understanding is limited. Here we reveal a GMF-modulated probabilistic abstract decision-making in humans and the underlying mechanism, exploiting the zero-sum binary stone choice of Go game as a proof-of-principle. The large-scale data analyses of professional Go matches and in situ stone choice games showed that the empirical probabilities of the stone selections were remarkably different from the theoretical probability. In laboratory experiments, experimental probability in the decision-making was significantly influenced by GMF conditions and specific magnetic resonance frequency. Time series and stepwise systematic analyses pinpointed the intentionally uncontrollable decision-making as a primary modulating target. Notably, the continuum of GMF lines and anisotropic magnetic interplay between players were crucial to influence the magnetic field resonance-mediated abstract decision-making. Our findings provide unique insights into the impact of sensing GMF in decision-makings at tipping points and the quantum mechanical mechanism for manifesting the gap between theoretical and empirical probability in 3-dimensional living space.Comment: 32 pages, 5 figures, 4 supplementary figures, 2 supplementary tables, and separate 15 ancillary file

    Enhancing mechanical properties of a low-carbon microalloyed cast steel by controlled heat treatment

    Get PDF
    In the present work, detailed studies were made on the optimization of microstructure and mechanical properties of a low-carbon microalloyed cast steel through control of heat treatment conditions. Specimens were austenitized at temperatures ranging from 950 to 1200 °C for 2 h followed by different cooling methods (furnace, air and water). For analyzing the effect of holding time on mechanical properties, some cast specimens were austenitized at 1100 °C for different times followed by furnace cooling. After heat treatment, mechanical tests were employed to evaluate the room temperature Charpy impact and tensile properties. The characterization of complex precipitates formed during heat treatment process was investigated by using analytical electron microscopy. The results show that dissolution of vanadium-containing precipitates plays an important role in the abnormal growth of austenite grains at 1150 °C. Further growth in austenite grains at 1200 °C is caused by the dissolution of Ti-containing particles and the reduction of the amount of precipitates. Correct selection of the austenitizing temperature, holding time and cooling method is very important to improve the mechanical properties of the steel. Heat treatment at 1100 °C for 2 h followed by furnace cooling leads to the best combination of excellent Charpy impact and tensile properties

    MLN51 and GM-CSF involvement in the proliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unclear etiology. This study was conducted to identify critical factors involved in the synovial hyperplasia in RA pathology. We applied cDNA microarray analysis to profile the gene expressions of RA fibroblast-like synoviocytes (FLSs) from patients with RA. We found that the MLN51 (metastatic lymph node 51) gene, identified in breast cancer, is remarkably upregulated in the hyperactive RA FLSs. However, growth-retarded RA FLSs passaged in vitro expressed small quantities of MLN51. MLN51 expression was significantly enhanced in the FLSs when the growth-retarded FLSs were treated with granulocyte – macrophage colony-stimulating factor (GM-CSF) or synovial fluid (SF). Anti-GM-CSF neutralizing antibody blocked the MLN51 expression even though the FLSs were cultured in the presence of SF. In contrast, GM-CSF in SFs existed at a significant level in the patients with RA (n = 6), in comparison with the other inflammatory cytokines, IL-1β and TNF-α. Most RA FLSs at passage 10 or more recovered from their growth retardation when cultured in the presence of SF. The SF-mediated growth recovery was markedly impaired by anti-GM-CSF antibody. Growth-retarded RA FLSs recovered their proliferative capacity after treatment with GM-CSF in a dose-dependent manner. However, MLN51 knock-down by siRNA completely blocked the GM-CSF/SF-mediated proliferation of RA FLSs. Taken together, our results imply that MLN51, induced by GM-CSF, is important in the proliferation of RA FLSs in the pathogenesis of RA

    Oxidation Resistive Cu Films by Room Temperature Surface Passivation with Thin Ag Layer

    Get PDF
    A displacement-deposited Ag layer was investigated as an oxidation barrier in damascene Cu structure for high performance interconnection. A 40 nm thick bright and continuous Ag film was formed at the surface of electrodeposited Cu by immersing the copper film into the silver displacement solution. The Ag film at Cu surface significantly blocked oxygen diffusion into the Cu film and retarded oxidation. More importantly, an elevated barrier performance for oxygen diffusion through elimination and stuffing of grain boundaries of Cu was observed upon annealing in a 400°C N2 atmosphere. Outward Cu diffusion through Ag layer controlled Cu oxidation when the surface was passivated with Ag layer

    Direct Plating of Low Resistivity Bright Cu Films onto TiN Barrier Layer via Pd Activation

    Get PDF
    For seedless electroplating of low resistivity Cu film applicable to deep submicrometer damascene feature, Pd activation was introduced to direct Cu electroplating onto a high resistivity TiN barrier to get a high quality Cu film. Displacement-deposited Pd particles on the TiN substrate acted as nucleation sites for Cu plating. This high-density instantaneous nucleation made it possible to deposit a continuous, bright Cu film with low resistivity of 3.1 mV cm ~after annealing!. Aided by small amounts of benzotriazole, Pd activation also gave way to the application of seedless plating to superfilling of a deep submicrometer damascene structure, where the formation of the seed layer had been a critical issue. Poor adhesion between plated Cu and Pd activated TiN substrate was greatly improved by the addition of poly~ethylene glycol!. The change in film characteristics was found to be negligible
    corecore