1,431 research outputs found

    Transverse emission of isospin ratios as a probe of high-density symmetry energy in isotopic nuclear reactions

    Full text link
    Transverse emission of preequilibrium nucleons, light clusters (complex particles) and charged pions from the isotopic 112,124^{112,124}Sn+112,124^{112,124}Sn reactions at a beam energy of 400\emph{A} MeV, to extract the high-density behavior of nuclear symmetry energy, are investigated within an isospin and momentum dependent transport model. Specifically, the double ratios of neutron/proton, triton/helium-3 and π−/π+\pi^{-}/\pi^{+} in the squeeze-out domain are analyzed systematically, which have the advantage of reducing the influence of the Coulomb force and less systematic errors. It is found that the transverse momentum distribution of isospin ratios strongly depend on the stiffness of nuclear symmetry energy, which would be a nice observable to extract the high-density symmetry energy. The collision centrality and the mass splitting of neutron and proton in nuclear medium play a significant role on the distribution structure of the ratios, but does not change the influence of symmetry energy on the spectrum.Comment: 5 figures, 13 page

    Ethyl 6-(2-chloro­phen­yl)-4-methyl-1-(3-oxobut­yl)-2-thioxo-1,2,3,6-tetra­hydro­pyrimidine-5-carboxyl­ate

    Get PDF
    In the title mol­ecule, C18H21ClN2O3S, the pyrimidine ring exhibits a half-chair conformation. The ethyl group is disordered between two positions in a ratio 0.74:0.26. In the crystal structure, the mol­ecules are linked into chains along the a axis by N—H⋯O hydrogen bonds

    catena-Poly[[{2-[(2-hy­droxy­eth­yl)imino­meth­yl]-6-meth­oxy­phenolato}copper(II)]-μ-thio­cyanato]

    Get PDF
    In the title thio­cyanate-bridged polynuclear copper(II) complex, [Cu(C10H12NO3)(NCS)]n, the Cu atom is five-coordinated in a square-pyramidal geometry, with one phenolato O, one imino N and one hy­droxy O atom of a Schiff base ligand and one thio­cyanato N atom defining the basal plane, and with one thio­cyanato S atom occupying the apical position. In the crystal structure, pairs of adjacent complex mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds into dimers. The dimers are further linked via Cu⋯S inter­actions, forming two-dimensional layers parallel to the bc plane

    Experimental and theoretical analysis of microstructural evolution and deformation behaviors of CuW composites during equal channel angular pressing

    Get PDF
    CuW composites were synthesized using an equal channel angular pressing (ECAP) technique. Microstructural evolution during sintering process was investigated using both optical microscopy and transmission electron microscopy (TEM), and their deformation mechanisms were studied using finite element analysis (FEA). Results showed severe plastic deformation of the CuW composites and effective refinement of W grains after the ECAP process. TEM observation revealed that the ECAP process resulted in lamellar bands with high densities dislocations inside the composites. Effects of extrusion temperature and extrusion angles on stress-strain relationship and sizes of deformation zones after the ECAP process were investigated both theoretically and experimentally. When the extrusion angle was 90°, a maximum equivalent stress of ~1001 MPa was obtained when the extrusion test was done at room temperature of 22 °C, and this value was lower than compression strength of the CuW composites (1105.43 MPa). The maximum equivalent strains were varied between 0.5 and 0.7. However, when the extrusion temperature was increased to 550 °C and further to 900 °C, the maximum equivalent stresses were decreased sharply, with readings of 311 MPa and 68 MPa, respectively. When the extrusion angle was increased to 135°, the maximum equivalent stresses were found to be 716.9 MPa, 208 MPa, and 32 MPa for the samples extruded at temperatures of 22 °C, 550 °C and 900 °C, respectively. Simultaneously, the maximum equivalent strains were decreased to 0.2–0.4. Furthermore, results showed that the maximum equivalent stress was located on the sample's external surface and the stress values were gradually decreased from the surface to the center of samples, and the magnitudes of plastic deformation zones at the surface were much larger than those at the central part of the sintered samples. FEA simulation results were in good agreements with experimentally measured ones

    Validated method to measure yakuchinone A in plasma by LC-MS/MS and its application to a pharmacokinetic study in rats

    Get PDF
    BACKGROUND: Yakuchinone A has a plethora of beneficial biological effects. However, the pharmacokinetic (PK) data of yakuchinone A still remain unknown so far. Furthermore, the quantification of yakuchinone A in biological samples has not been reported in the literature. Therefore, in the present study we aimed to develop a new method for the fast, efficient and accurate assessment of yakuchinone A concentration in plasma, as a means for facilitating the PK evaluation of yakuchinone A. RESULTS: A liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for the determination of yakuchinone A in rat plasma. Mass spectrometric and chromatographic conditions were optimized. Plasma samples were pretreated by protein precipitation with methanol. LC separation was performed on a Phenomenex Luna C18 column with gradient elution using a mobile phase consisting of methanol–water containing 0.5 mM formic acid (HCOOH) at a flow rate of 0.28 mL/min. ESI-MS spectra were acquired in positive ion multiple reaction monitoring mode (MRM). The precursor-to-product ion pairs used for MRM of yakuchinone A and yakuchinone B were m/z 313.1 → 137.0 and 311.2 → 117.1, respectively. Low concentration of HCOOH reduced the ion suppression caused by matrix components and clearly improved the analytical sensitivity. Yakuchinone A showed good linearity over a wide concentration range (r > 0.99). The accuracy, precision, stability and linearity were found to be within the acceptable criteria. This new method was successfully applied to analyze the rat plasma concentration of parent yakuchinone A after a single oral administration of SuoQuan capsules. Low systemic exposure to parent yakuchinone A was observed. CONCLUSION: The proposed method is sensitive and reliable. It is hoped that this new method will prove useful for the future PK studies

    The importance of population origin and reciprocal heterogeneous microhabitat on clonal propagation of Iris japonica Thunb.

    Get PDF
    A reciprocal transplant-replant experiment was carried out to investigate the clonal plasticity and local specialization of OAFE population (O type) and BF population (U type) of a clonal rhizome herb Iris japonica in contrasting reciprocal heterogeneous habitats on Jinyun Mountain. U Population had better performance of plant size and clonal propagation (including allocation to clonal propagation, daughter ramet and fine rhizome) in different reciprocal heterogeneous habitats than O population. Both the population origin and reciprocal spatial heterogeneous habitat had effects on clonal ramets and biomass of clonal components of experimental plants. The plasticity of clonal growth had difference in clonal components to balance High light-Low soil resources (water) (HL) or Low light-High soil resources (LH) due to the ecological isolation of the two I. japonica populations. Our findings indicated that two major types of patterns of spatial covariance of resources can have different effects on the growth and local variation of clonal plants
    • …
    corecore