3,708 research outputs found
Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories
We report an experimental realization of a narrow-band polarization-entangled
photon source with a linewidth of 9.6 MHz through cavity-enhanced spontaneous
parametric down-conversion. This linewidth is comparable to the typical
linewidth of atomic ensemble based quantum memories. Single-mode output is
realized by setting a reasonable cavity length difference between different
polarizations, using of temperature controlled etalons and actively stabilizing
the cavity. The entangled property is characterized with quantum state
tomography, giving a fidelity of 94% between our state and a maximally
entangled state. The coherence length is directly measured to be 32 m through
two-photon interference.Comment: 4 pages, 4 figure
Negative entanglement measure for bipartite separable mixed states
We define a negative entanglement measure for separable states which shows
that how much entanglement one should compensate the unentangled state at least
for changing it into an entangled state. For two-qubit systems and some special
classes of states in higher-dimensional systems, the explicit formula and the
lower bounds for the negative entanglement measure have been presented, and it
always vanishes for bipartite separable pure states. The negative entanglement
measure can be used as a useful quantity to describe the entanglement dynamics
and the quantum phase transition. In the transverse Ising model, the first
derivatives of negative entanglement measure diverge on approaching the
critical value of the quantum phase transition, although these two-site reduced
density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the
NEM as a function of changes from zero to negative on approaching the
critical point of quantum phase transition.Comment: 6 pages, 3 figure
Tensor network simulation of phase diagram of frustrated J1-J2 Heisenberg model on a checkerboard lattice
We use the recently developed tensor network algorithm based on infinite
projected entangled pair states (iPEPS) to study the phase diagram of
frustrated antiferromagnetic J1-J2 Heisenberg model on a checkerboard lattice.
The simulation indicates a Neel ordered phase when J2 < 0.88J1, a plaquette
valence bond solid state when 0.88
1.11J1, with two first-order transitions across the phase boundaries. The
calculation shows the cross-dimer state proposed before is unlikely to be the
ground state of the model, although such a state indeed arises as a metastable
state in some parameter region.Comment: 4 pages, 5 figure
Local Operations in qubit arrays via global but periodic Manipulation
We provide a scheme for quantum computation in lattice systems via global but
periodic manipulation, in which only effective periodic magnetic fields and
global nearest neighbor interaction are required. All operations in our scheme
are attainable in optical lattice or solid state systems. We also investigate
universal quantum operations and quantum simulation in 2 dimensional lattice.
We find global manipulations are superior in simulating some nontrivial many
body Hamiltonians.Comment: 5 pages, 2 figures, to appear in Phys. Rev.
- …