3,708 research outputs found

    Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories

    Full text link
    We report an experimental realization of a narrow-band polarization-entangled photon source with a linewidth of 9.6 MHz through cavity-enhanced spontaneous parametric down-conversion. This linewidth is comparable to the typical linewidth of atomic ensemble based quantum memories. Single-mode output is realized by setting a reasonable cavity length difference between different polarizations, using of temperature controlled etalons and actively stabilizing the cavity. The entangled property is characterized with quantum state tomography, giving a fidelity of 94% between our state and a maximally entangled state. The coherence length is directly measured to be 32 m through two-photon interference.Comment: 4 pages, 4 figure

    Negative entanglement measure for bipartite separable mixed states

    Full text link
    We define a negative entanglement measure for separable states which shows that how much entanglement one should compensate the unentangled state at least for changing it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the NEM as a function of t/Ut/U changes from zero to negative on approaching the critical point of quantum phase transition.Comment: 6 pages, 3 figure

    Tensor network simulation of phase diagram of frustrated J1-J2 Heisenberg model on a checkerboard lattice

    Full text link
    We use the recently developed tensor network algorithm based on infinite projected entangled pair states (iPEPS) to study the phase diagram of frustrated antiferromagnetic J1-J2 Heisenberg model on a checkerboard lattice. The simulation indicates a Neel ordered phase when J2 < 0.88J1, a plaquette valence bond solid state when 0.88 1.11J1, with two first-order transitions across the phase boundaries. The calculation shows the cross-dimer state proposed before is unlikely to be the ground state of the model, although such a state indeed arises as a metastable state in some parameter region.Comment: 4 pages, 5 figure

    Local Operations in qubit arrays via global but periodic Manipulation

    Get PDF
    We provide a scheme for quantum computation in lattice systems via global but periodic manipulation, in which only effective periodic magnetic fields and global nearest neighbor interaction are required. All operations in our scheme are attainable in optical lattice or solid state systems. We also investigate universal quantum operations and quantum simulation in 2 dimensional lattice. We find global manipulations are superior in simulating some nontrivial many body Hamiltonians.Comment: 5 pages, 2 figures, to appear in Phys. Rev.
    corecore