2,428 research outputs found
Dynamic Resource Allocation for Multiple-Antenna Wireless Power Transfer
We consider a point-to-point multiple-input-single-output (MISO) system where
a receiver harvests energy from a wireless power transmitter to power itself
for various applications. The transmitter performs energy beamforming by using
an instantaneous channel state information (CSI). The CSI is estimated at the
receiver by training via a preamble, and fed back to the transmitter. The
channel estimate is more accurate when longer preamble is used, but less time
is left for wireless power transfer before the channel changes. To maximize the
harvested energy, in this paper, we address the key challenge of balancing the
time resource used for channel estimation and wireless power transfer (WPT),
and also investigate the allocation of energy resource used for wireless power
transfer. First, we consider the general scenario where the preamble length is
allowed to vary dynamically. Taking into account the effects of imperfect CSI,
the optimal preamble length is obtained online by solving a dynamic programming
(DP) problem. The solution is shown to be a threshold-type policy that depends
only on the channel estimate power. Next, we consider the scenario in which the
preamble length is fixed. The optimal preamble length is optimized offline.
Furthermore, we derive the optimal power allocation schemes for both scenarios.
For the scenario of dynamic-length preamble, the power is allocated according
to both the optimal preamble length and the channel estimate power; while for
the scenario of fixed-length preamble, the power is allocated according to only
the channel estimate power. The analysis results are validated by numerical
simulations. Encouragingly, with optimal power allocation, the harvested energy
by using optimized fixed-length preamble is almost the same as the harvested
energy by employing dynamic-length preamble, hence allowing a low-complexity
WPT system to be implemented in practice.Comment: 30 pages, 6 figures, Submitted to the IEEE Transactions on Signal
Processin
Kinetic study for hopping conduction through DNA molecules
Recent experiments indicated that disorder effect in DNA may lead to a
transition of the charge transport mechanism from band resonant tunnelling to
thermal activated hopping. In this letter, based on Mott's variable-range
hopping theory we present a kinetic study for the charge transport properties
of DNA molecules. Beyond the conventional argument in large-scale systems, our
numerical study for finite-size DNA molecules reveals a number of unique
features for (i) the I-V characteristics, (ii) the temperature and length
dependence, and (iii) the transition from conducting to insulating behaviors.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let
Throughput Optimization for Massive MIMO Systems Powered by Wireless Energy Transfer
This paper studies a wireless-energy-transfer (WET) enabled massive
multiple-input-multiple-output (MIMO) system (MM) consisting of a hybrid
data-and-energy access point (H-AP) and multiple single-antenna users. In the
WET-MM system, the H-AP is equipped with a large number of antennas and
functions like a conventional AP in receiving data from users, but additionally
supplies wireless power to the users. We consider frame-based transmissions.
Each frame is divided into three phases: the uplink channel estimation (CE)
phase, the downlink WET phase, as well as the uplink wireless information
transmission (WIT) phase. Firstly, users use a fraction of the previously
harvested energy to send pilots, while the H-AP estimates the uplink channels
and obtains the downlink channels by exploiting channel reciprocity. Next, the
H-AP utilizes the channel estimates just obtained to transfer wireless energy
to all users in the downlink via energy beamforming. Finally, the users use a
portion of the harvested energy to send data to the H-AP simultaneously in the
uplink (reserving some harvested energy for sending pilots in the next frame).
To optimize the throughput and ensure rate fairness, we consider the problem of
maximizing the minimum rate among all users. In the large- regime, we obtain
the asymptotically optimal solutions and some interesting insights for the
optimal design of WET-MM system. We define a metric, namely, the massive MIMO
degree-of-rate-gain (MM-DoRG), as the asymptotic UL rate normalized by
. We show that the proposed WET-MM system is optimal in terms of
MM-DoRG, i.e., it achieves the same MM-DoRG as the case with ideal CE.Comment: 15 double-column pages, 6 figures, 1 table, to appear in IEEE JSAC in
February 2015, special issue on wireless communications powered by energy
harvesting and wireless energy transfe
from the semileptonic decay and the properties of the meson distribution amplitude
The improved QCD light-cone sum rule (LCSR) provides an effective way to deal
with the heavy-to-light transition form factors (TFFs). Firstly, we adopt the
improved LCSR approach to deal with the TFF up to twist-4
accuracy. Due to the elimination of the most uncertain twist-3 contribution and
the large suppression of the twist-4 contribution, the obtained LCSR shall
provide us a good platform for testing the -meson leading-twist DA. For the
purpose, we suggest a new model for the -meson leading-twist DA
(), whose longitudinal behavior is dominantly determined by a
parameter . Moreover, we find its second Gegenbauer moment .
Varying within certain region, one can conveniently mimic the -meson DA
behavior suggested in the literature. Inversely, by comparing the estimations
with the experimental data on the -meson involved processes, one can get a
possible range for the parameter and a determined behavior for the
-meson DA. Secondly, we discuss the TFF at the maximum recoil
region and present a detailed comparison of it with the pQCD estimation and the
experimental measurements. Thirdly, by applying the LCSR on , we
study the CKM matrix element \Vcb together with its uncertainties by adopting
two types of processes, i.e. the -type and the -type.
It is noted that a smaller shows a better agreement with the
experimental value on \Vcb. For example, for the case of , we obtain
and , whose first (second)
uncertainty comes from the squared average of the mentioned theoretical
(experimental) uncertainties.Comment: 13 pages, 10 figures. Reference updated and discussion improved. To
be published in Nucl.Phys.
The -meson longitudinal leading-twist distribution amplitude
In the present paper, we suggest a convenient model for the vector
-meson longitudinal leading-twist distribution amplitude
, whose distribution is controlled by a single parameter
. By choosing proper chiral current in the correlator, we obtain
new light-cone sum rules (LCSR) for the TFFs , and ,
in which the -order provides dominant
contributions. Then we make a detailed discussion on the
properties via those TFFs. A proper choice of can
make all the TFFs agree with the lattice QCD predictions. A prediction of
has also been presented by using the extrapolated TFFs, which
indicates that a larger leads to a larger . To
compare with the BABAR data on , the longitudinal leading-twist
DA prefers a doubly-humped behavior.Comment: 7 pages, 3 figures. Discussions improved and references updated. To
be published in Phys.Lett.
- β¦