15 research outputs found

    THE STATUS OF A 1.6-CELL PHOTOCATHODE RF GUN AT PAL *

    Get PDF
    Abstract The RF power conditioning of the photocathode RF gun with four holes at the side of the full cell named as 'Pohang gun' is in progress. The first goal of the conditioning is the operation of the gun with RF pulse width of 1.5 μs, repetition rate of 30 Hz, field gradient at the cathode of 130MV/m. We operated the RF gun successfully with the conditions within last few months. It was first operational experience with such conditions in PAL. Now we have a plan to operate RF gun with higher repetition rate up to 60 Hz

    SIMULATION RESULTS OF SELF SEEDING SCHEME IN PAL-XFEL

    Get PDF
    Abstract There are two major undulator lines in Pohang Accelerator Laboratory XFEL (PAL XFEL), soft X-ray and hard X-ray. For the hard X-ray undulator line, selfseeding is the most promising approach to supply narrow bandwidth radiation to the users. The electron energy at hard X-ray undulator is 10 GeV and the central wavelength is 0.1 nm. We plan to provide the self-seeding option in the Phase I operation of PAL-XFEL. In this talk, the simulation results for the self-seeding scheme of hard X-ray undulator line in PAL XFEL will be presented

    Stochastic resonance in an ion channel following the non-Arrhenius gating rate

    No full text
    87.16.Vy Ion channels, 02.50.Ey Stochastic processes, 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion,

    Modified reverse tapering method to prevent frequency shift of the radiation in the planar undulator

    No full text
    This paper presents a modified reverse tapering method to generate a polarized soft x ray in x-ray free-electron lasers (XFELs) with a higher photon power and a shorter undulator length than the simple linear reverse tapering method. In the proposed method, a few untapered planar undulators are added before the simple linear reverse tapering section of the undulator line. This simple modification prevents the frequency shift of the radiation that occurs when the simple linear reverse tapering method is applied to planar undulators. In the proposed method, the total length of planar undulators decreased in spite of the additional untapered undulators. When the modified reverse tapering method is used with four untapered planar undulators, the total length of the planar undulators is 64.6 m. On the other hand, the required length of the planar undulators is 94.6 m when the simple linear reverse tapering method is used. The proposed method gives us a way to generate a soft x-ray pulse (1.24 keV) with a high degree of polarization (>0.99) and radiation power (>30  GW) at the new undulator line with a 10-GeV electron beam in the Pohang Accelerator Laboratory X-ray Free-Electron Laser. This method can be applied in the existing XFELs in the world without any change in the undulator lines

    Toward the Generation of an Isolated TW-Attosecond X-ray Pulse in XFEL

    No full text
    The isolated terawatt (TW) attosecond (as) hard X-ray pulse will expand the scope of ultrafast science, including the examination of phenomena that have not been studied before, such as the dynamics of electron clouds in atoms, single-molecule imaging, and examining the dynamics of hollow atoms. Therefore, several schemes for the generation of an isolated TW-as X-ray pulse in X-ray free electron laser (XFEL) facilities have been proposed with the manipulation of electron properties such as emittance or current. In a multi-spike scheme, a series of current spikes were employed to amplify the X-ray pulse. A single-spike scheme in which a TW-as X-ray pulse can be generated by a single current spike was investigated for ideal parameters for the XFEL machine. This paper reviews the proposed schemes and assesses the feasibility of each scheme

    HIGH POWER BEAM TEST OF A 1.6-CELL PHOTOCATHODE RF GUN AT PAL*

    No full text
    Abstract The photocathode RF gun with four holes at the side of the full cell will be tested soon at the gun test stand which consists of a 1.6 cell cavity, a solenoid magnet, beam diagnostic components and auxiliary systems such as ICT, spectrometer, YAG scintillator and screens, Faraday cup, etc. Basic diagnostics such as the measurements of charge, energy and its spread, transverse emittance will be performed. It is expected that these diagnostics will confirm a successful fabrication of the RF gun. In this presentation, we will show the status of the RF gun aging in PAL and detail plan of measurements on various beam parameters. The results with the simulation code PARMELA will be presented to prepare measurement devices properly
    corecore