24 research outputs found
Highly Active and Selective Au thin layer on Cu Polycrystalline Surface Prepared by Galvanic Displacement for the Electrochemical Reduction of CO2 to CO
An electrochemical reduction of CO2 to CO has become a challenging issue in CO2 utilization in order to mitigate the climate change. In this study, we report a promising approach to prepare Au-based electrocatalysts for the electrochemical reduction of CO2 to CO having the maximized activity/selectivity and the minimized Au usage. It was clearly confirmed that the Au thin layer formed by the electrochemical galvanic displacement on polycrystalline Cu surface resulted in a markedly enhanced performance for the electrochemical reduction of CO2 to CO. The CO Faradaic efficiency for the Au thin layer on Cu was 10.6 and 3.4 times higher than that for the polycrystalline Cu and Au, respectively. It was revealed from the photoemission spectroscopy (PES) studies that the increase of electron population in s-band and the upshift of d-band center position of Au in Au/Cu increased the bond strength with reaction intermediates leading to the enhancement of activity and the selectivity. Along with the electronic effect, the geometric effect like the increased the electrochemical surface area (ECSA) and proportion of low coordinated sites also played a substantial role in the performance enhancement. (C) 2017 Elsevier B.V. All rights reserved.11Nsciescopu
Mycobacterium tuberculosis RpfE-Induced Prostaglandin E2 in Dendritic Cells Induces Th1/Th17 Cell Differentiation
Prostaglandin E2 (PGE2) is an important biological mediator involved in the defense against Mycobacterium tuberculosis (Mtb) infection. Currently, there are no reports on the mycobacterial components that regulate PGE2 production. Previously, we have reported that RpfE-treated dendritic cells (DCs) effectively expanded the Th1 and Th17 cell responses simultaneously; however, the mechanism underlying Th1 and Th17 cell differentiation is unclear. Here, we show that PGE2 produced by RpfE-activated DCs via the MAPK and cyclooxygenase 2 signaling pathways induces Th1 and Th17 cell responses mainly via the EP4 receptor. Furthermore, mice administered intranasally with PGE2 displayed RpfE-induced antigen-specific Th1 and Th17 responses with a significant reduction in bacterial load in the lungs. Furthermore, the addition of optimal PGE2 amount to IL-2-IL-6-IL-23p19-IL-1β was essential for promoting differentiation into Th1/Th17 cells with strong bactericidal activity. These results suggest that RpfE-matured DCs produce PGE2 that induces Th1 and Th17 cell differentiation with potent anti-mycobacterial activity
Mycobacterium tuberculosis Protein Rv3841 Activates Dendritic Cells and Contributes to a T Helper 1 Immune Response
The attenuated vaccine Mycobacterium bovis BCG (Bacille Calmette Guerin) has limited protective efficacy against TB. The development of more effective TB vaccines has focused on the mycobacterial antigens that cause strong T helper 1 (Th1) responses. Mtb protein Rv3841 (bacterioferritin B; BfrB) is known to play a crucial role in the growth of Mtb. Nonetheless, it is unclear whether Rv3841 can induce protective immunity against Mtb. Here, we studied the action of Rv3841 in maturation of dendritic cells (DCs) and its engagement in the development of T-cell immunity. We found that Rv3841 functionally activated DCs by upregulating costimulatory molecules and increased secretion of proinflammatory cytokines. Activation of DCs by Rv3841 was mediated by Toll-like receptor 4 (TLR4), followed by triggering of mitogen-activated protein kinase and nuclear factor-κB signaling pathways. In addition, Rv3841-matured DCs effectively proliferated and polarized Th1 immune response of naïve CD4+ and CD8+ T-cells. Moreover, Rv3841 specifically caused the expansion of CD4+CD44highCD62Llow T-cells from Mtb-infected mice; besides, the T-cells activated by Rv3841-matured DCs inhibited intracellular mycobacterial growth. Our data suggest that Rv3841 induces DC maturation and protective immune responses, a finding that may provide candidate of effective TB vaccines
Cell wall skeleton of Mycobacterium bovis BCG enhances the vaccine potential of antigen 85B against tuberculosis by inducing Th1 and Th17 responses.
A safe and effective adjuvant is necessary to induce reliable protective efficacy of the protein-based vaccines against tuberculosis (TB). Mycobacterial components, such as synthetic cord factor and arabinogalactan, have been used as one of the adjuvant components. Mycobacterium bovis bacillus Calmette- Guérin cell-wall skeleton (BCG-CWS) has been used as an effective immune-stimulator. However, it is not proven whether BCG-CWS can be an effective adjuvant for the subunit protein vaccine of TB. In this study, we demonstrated that the BCG-CWS effectively coupled with Ag85B and enhanced the conjugated Ag85B activity on the maturation of dendritic cells (DCs). Ag85B-BCG-CWS-matured DCs induced significant Th1 and Th17 responses when compared to BCG-CWS or Ag85B alone. In addition, significant Ag85B-specific Th1 and Th17 responses were induced in Ag85B-BCG-CWS-immunized mice before infection with M. tuberculosis and maintained after infection. Moreover, Ag85B-BCG-CWS showed significant protective effect comparable to live BCG at 6 weeks after infection and maintained its protective efficacy at 32 weeks post-challenge, whereas live BCG did not. These results suggest that the BCG-CWS may be an effective adjuvant candidate for a protein-based vaccine against TB
Mycobacterium tuberculosis
The attenuated vaccine Mycobacterium bovis BCG (Bacille Calmette Guerin) has limited protective efficacy against TB. The development of more effective TB vaccines has focused on the mycobacterial antigens that cause strong T helper 1 (Th1) responses. Mtb protein Rv3841 (bacterioferritin B; BfrB) is known to play a crucial role in the growth of Mtb. Nonetheless, it is unclear whether Rv3841 can induce protective immunity against Mtb. Here, we studied the action of Rv3841 in maturation of dendritic cells (DCs) and its engagement in the development of T-cell immunity. We found that Rv3841 functionally activated DCs by upregulating costimulatory molecules and increased secretion of proinflammatory cytokines. Activation of DCs by Rv3841 was mediated by Toll-like receptor 4 (TLR4), followed by triggering of mitogen-activated protein kinase and nuclear factor-κB signaling pathways. In addition, Rv3841-matured DCs effectively proliferated and polarized Th1 immune response of naïve CD4+ and CD8+ T-cells. Moreover, Rv3841 specifically caused the expansion of CD4+CD44highCD62Llow T-cells from Mtb-infected mice; besides, the T-cells activated by Rv3841-matured DCs inhibited intracellular mycobacterial growth. Our data suggest that Rv3841 induces DC maturation and protective immune responses, a finding that may provide candidate of effective TB vaccines
Mycobacterium tuberculosis Rv2005c Induces Dendritic Cell Maturation and Th1 Responses and Exhibits Immunotherapeutic Activity by Fusion with the Rv2882c Protein
Immunotherapy represents a promising approach for improving current antibiotic treatments through the engagement of the host’s immune system. Latency-associated antigens have been included as components of multistage subunit tuberculosis vaccines. We first identified Rv2005c, a DosR regulon-encoded protein, as a seroreactive protein. In this study, we found that Rv2005c induced dendritic cell (DC) maturation and Th1 responses, and its expression by Mycobacterium tuberculosis (Mtb) within macrophages was enhanced by treatment with CoCl2, a hypoxia-mimetic agent. T cells activated by Rv2005c-matured DCs induced antimycobacterial activity in macrophages under hypoxic conditions but not under normoxic conditions. However, Rv2005c alone did not exhibit any significant vaccine efficacy in our mouse model. The fusion of Rv2005c to the macrophage-activating protein Rv2882c resulted in significant activation of DCs and antimycobacterial activity in macrophages, which were enhanced under hypoxic conditions. Furthermore, the Rv2882c-Rv2005c fusion protein showed significant adjunctive immunotherapeutic effects and led to the generation of long-lasting, antigen-specific, multifunctional CD4+ T cells that coproduced TNF-α, IFN-γ and IL-2 in the lungs of our established mouse model. Overall, these results provide a novel fusion protein with immunotherapeutic potential as adjunctive chemotherapy for tuberculosis
A Dendritic Cell-Activating Rv1876 Protein Elicits Mycobacterium Bovis BCG-Prime Effect via Th1-Immune Response
The widely administered tuberculosis (TB) vaccine, Bacillus Calmette-Guerin (BCG), is the only licensed vaccine, but has highly variable efficiency against childhood and pulmonary TB. Therefore, the BCG prime-boost strategy is a rational solution for the development of new TB vaccines. Studies have shown that Mycobacterium tuberculosis (Mtb) culture filtrates contain proteins that have promising vaccine potential. In this study, Rv1876 bacterioferritin was identified from the culture filtrate fraction with strong immunoreactivity. Its immunobiological potential has not been reported previously. We found that recombinant Rv1876 protein induced dendritic cells’ (DCs) maturation by MAPK and NF-κB signaling activation, induced a T helper type 1 cell-immune response, and expanded the population of the effector/memory T cell. Boosting BCG with Rv1876 protein enhanced the BCG-primed Th1 immune response and reduced the bacterial load in the lung compared to those of BCG alone. Thus, Rv1876 is a good target for the prime-boost strategy
<i>Mycobacterium tuberculosis</i> Rv2882c Protein Induces Activation of Macrophages through TLR4 and Exhibits Vaccine Potential
<div><p>Macrophages constitute the first line of defense against <i>Mycobacterium tuberculosis</i> and are critical in linking innate and adaptive immunity. Therefore, the identification and characterization of mycobacterial proteins that modulate macrophage function are essential for understanding tuberculosis pathogenesis. In this study, we identified the novel macrophage-activating protein, Rv2882c, from <i>M</i>. <i>tuberculosis</i> culture filtrate proteins. Recombinant Rv2882c protein activated macrophages to secrete pro-inflammatory cytokines and express co-stimulatory and major histocompatibility complex molecules via Toll-like receptor 4, myeloid differentiation primary response protein 88, and Toll/IL-1 receptor-domain-containing adaptor inducing IFN-beta. Mitogen-activated protein kinases and NF-κB signaling pathways were involved in Rv2882c-induced macrophage activation. Further, Rv2882c-treated macrophages induced expansion of the effector/memory T cell population and Th1 immune responses. In addition, boosting Bacillus Calmette-Guerin vaccination with Rv2882c improved protective efficacy against <i>M</i>. <i>tuberculosis</i> in our model system. These results suggest that Rv2882c is an antigen that could be used for tuberculosis vaccine development.</p></div
Rv2882c boosting enhanced the BCG protective immune response in an <i>in vivo</i> model.
<p>The infection procedure is described in the Materials and Methods. Six weeks after challenge, animals’ spleens and lungs were harvested and the number of bacteria (CFUs) per organ was counted. (A) Schedule for BCG immunization, Rv2882c boosting, and Mtb challenge. (B) Bacterial loads in the lungs and spleens of each group are represented as the mean (± SEM) log<sub>10</sub> CFUs/organ (n = 5); *<i>p</i> < 0.05; **<i>p</i> < 0.01; ***<i>P</i> < 0.001 vs. the infection-only group. (C) Spleen and lung cells were harvested from mice in each group, and the cytokine levels were analyzed by ELISA. The lung and spleen cells (10<sup>6</sup>/well) were treated with Ag85B (10 μg/mL) or Rv2882c (10 μg/mL) for 3 days. These cells were obtained from each group of vaccinated mice. The data are shown as mean ± SD (n = 15); *<i>p</i> < 0.05, **<i>p</i> < 0.01, or ***<i>p</i> < 0.001: a significant difference between Rv2882c- or Ag85B-restimulated nonvaccination and vaccination groups, as determined by one-way ANOVA. Treatments without significant effects are labeled with <i>n</i>.<i>s</i>.</p