12,920 research outputs found

    Polycrystalline graphene and other two-dimensional materials

    Get PDF
    Graphene, a single atomic layer of graphitic carbon, has attracted intense attention due to its extraordinary properties that make it a suitable material for a wide range of technological applications. Large-area graphene films, which are necessary for industrial applications, are typically polycrystalline, that is, composed of single-crystalline grains of varying orientation joined by grain boundaries. Here, we present a review of the large body of research reported in the past few years on polycrystalline graphene. We discuss its growth and formation, the microscopic structure of grain boundaries and their relations to other types of topological defects such as dislocations. The review further covers electronic transport, optical and mechanical properties pertaining to the characterizations of grain boundaries, and applications of polycrystalline graphene. We also discuss research, still in its infancy, performed on other 2D materials such as transition metal dichalcogenides, and offer perspectives for future directions of research.Comment: review article; part of focus issue "Graphene applications

    Analyzing long-term correlated stochastic processes by means of recurrence networks: Potentials and pitfalls

    Get PDF
    Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight the potentials and conceptual as well as practical limitations when applying the recently proposed recurrence network (RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results of a previous application of RN analysis to fBm (Liu \textit{et al.,} Phys. Rev. E \textbf{89}, 032814 (2014)) are mainly due to an inappropriate treatment disregarding the intrinsic non-stationarity of such processes. Complementarily, we analyze some RN properties of the closely related stationary fractional Gaussian noise (fGn) processes and find that the resulting network properties are well-defined and behave as one would expect from basic conceptual considerations. Our results demonstrate that RN analysis can indeed provide meaningful results for stationary stochastic processes, given a proper selection of its intrinsic methodological parameters, whereas it is prone to fail to uniquely retrieve RN properties for non-stationary stochastic processes like fBm.Comment: 8 pages, 6 figure

    Theory of electron-phonon interaction in a nonequilibrium open electronic system

    Full text link
    We study the effects of time-independent nonequilibrium drive on an open 2D electron gas system coupled to 2D longitudinal acoustic phonons using the Keldysh path integral method. The layer electron-phonon system is defined at the two-dimensional interface between a pair of three-dimensional Fermi liquid leads, which act both as a particle pump and an infinite bath. The nonequilibrium steady state is achieved in the layer by assuming the leads to be thermally equilibrated at two different chemical potentials. This subjects the layer to an out-of-plane voltage VV and drives a steady-state charge current perpendicular to the system. We compute the effects of small voltages (V\ll\w_D) on the in-plane electron-phonon scattering rate and the electron effective mass at zero temperature. We also find that the obtained onequilibrium modification to the acoustic phonon velocity and the Thomas-Fermi screening length reveal the possibility of tuning these quantities with the external voltage.Comment: 14 pages, 4 figure

    Superfluid-Insulator transitions of bosons on Kagome lattice at non-integer fillings

    Get PDF
    We study the superfluid-insulator transitions of bosons on the Kagome lattice at incommensurate filling factors f=1/2 and 2/3 using a duality analysis. We find that at f=1/2 the bosons will always be in a superfluid phase and demonstrate that the T_3 symmetry of the dual (dice) lattice, which results in dynamic localization of vortices due to the Aharanov-Bohm caging effect, is at the heart of this phenomenon. In contrast, for f=2/3, we find that the bosons exhibit a quantum phase transition between superfluid and translational symmetry broken Mott insulating phases. We discuss the possible broken symmetries of the Mott phase and elaborate the theory of such a transition. Finally we map the boson system to a XXZ spin model in a magnetic field and discuss the properties of this spin model using the obtained results.Comment: 10 pages, 8 figures, a few typos correcte

    Bose-Hubbard model on a star lattice

    Get PDF
    We analyze the Bose-Hubbard model of hardcore bosons with nearest neighbor hopping and repulsive interactions on a star lattice using both quantum Monte Carlo simulation and dual vortex theory. We obtain the phase diagram of this model as a function of the chemical potential and the relative strength of hopping and interaction. In the strong interaction regime, we find that the Mott phases of the model at 1/2 and 1/3 fillings, in contrast to their counterparts on square, triangular, and Kagome lattices, are either translationally invariant resonant valence bond (RVB) phases with no density-wave order or have coexisting density-wave and RVB orders. We also find that upon increasing the relative strength of hopping and interaction, the translationally invariant Mott states undergo direct second order superfluid-insulator quantum phase transitions. We compute the critical exponents for these transitions and argue using the dual vortex picture that the transitions, when approached through the tip of the Mott lobe, belong to the inverted XY universality class.Comment: 10 pages, 18 figures, minor changes, two references adde
    corecore