3,308 research outputs found

    Observation of Topologically Stable 2D Skyrmions in an Antiferromagnetic Spinor Bose-Einstein Condensate

    Full text link
    We present the creation and time evolution of two-dimensional Skyrmion excitations in an antiferromagnetic spinor Bose-Einstein condensate. Using a spin rotation method, the Skyrmion spin textures were imprinted on a sodium condensate in a polar phase, where the two-dimensional Skyrmion is topologically protected. The Skyrmion was observed to be stable on a short time scale of a few tens of ms but to have dynamical instability to deform its shape and eventually decay to a uniform spin texture. The deformed spin textures reveal that the decay dynamics involves breaking the polar phase inside the condensate without having topological charge density flow through the boundary of the finite-sized sample. We discuss the possible formation of half-quantum vortices in the deformation process.Comment: 5 pages, 5 figure

    Role of thermal friction in relaxation of turbulent Bose-Einstein condensates

    Full text link
    In recent experiments, the relaxation dynamics of highly oblate, turbulent Bose-Einstein condensates (BECs) was investigated by measuring the vortex decay rates in various sample conditions [Phys. Rev. A 90\bf 90, 063627 (2014)] and, separately, the thermal friction coefficient α\alpha for vortex motion was measured from the long-time evolution of a corotating vortex pair in a BEC [Phys. Rev. A 92\bf 92, 051601(R) (2015)]. We present a comparative analysis of the experimental results, and find that the vortex decay rate Γ\Gamma is almost linearly proportional to α\alpha. We perform numerical simulations of the time evolution of a turbulent BEC using a point-vortex model equipped with longitudinal friction and vortex-antivortex pair annihilation, and observe that the linear dependence of Γ\Gamma on α\alpha is quantitatively accounted for in the dissipative point-vortex model. The numerical simulations reveal that thermal friction in the experiment was too strong to allow for the emergence of a vortex-clustered state out of decaying turbulence.Comment: 7 pages, 5 figure

    Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate

    Full text link
    We investigate vortex shedding from a moving penetrable obstacle in a highly oblate Bose-Einstein condensate. The penetrable obstacle is formed by a repulsive Gaussian laser beam that has the potential barrier height lower than the chemical potential of the condensate. The moving obstacle periodically generates vortex dipoles and the vortex shedding frequency fvf_v linearly increases with the obstacle velocity vv as fv=a(vvc)f_v=a(v-v_c), where vcv_c is a critical velocity. Based on periodic shedding behavior, we demonstrate deterministic generation of a single vortex dipole by applying a short linear sweep of a laser beam. This method will allow further controlled vortex experiments such as dipole-dipole collisions.Comment: 6 pages, 7 figure

    Critical Velocity for Vortex Shedding in a Bose-Einstein Condensate

    Full text link
    We present measurements of the critical velocity for vortex shedding in a highly oblate Bose-Einstein condensate with a moving repulsive Gaussian laser beam. As a function of the barrier height V0V_0, the critical velocity vcv_c shows a dip structure having a minimum at V0μV_0 \approx \mu , where μ\mu is the chemical potential of the condensate. At fixed V07μV_0\approx 7\mu, we observe that the ratio of vcv_c to the speed of sound csc_s monotonically increases for decreasing σ/ξ\sigma/\xi, where σ\sigma is the beam width and ξ\xi is the condensate healing length. The measured upper bound for vc/csv_c/c_s is about 0.4, which is in good agreement with theoretical predictions for a two-dimensional superflow past a circular cylinder. We explain our results with the density reduction effect of the soft boundary of the Gaussian obstacle, based on the local Landau criterion for superfluidity.Comment: 5 pages, 4 figure

    Evidence for a preformed Cooper pair model in the pseudogap spectra of a Ca10(Pt4As8)(Fe2As2)5 single crystal with a nodal superconducting gap

    Get PDF
    For high-Tc superconductors, clarifying the role and origin of the pseudogap is essential for understanding the pairing mechanism. Among the various models describing the pseudogap, the preformed Cooper pair model is a potential candidate. Therefore, we present experimental evidence for the preformed Cooper pair model by studying the pseudogap spectrum observed in the optical conductivity of a Ca10(Pt4As8)(Fe2As2)5 (Tc = 34.6 K) single crystal. We observed a clear pseudogap structure in the optical conductivity and observed its temperature dependence. In the superconducting (SC) state, one SC gap with a gap size of {\Delta} = 26 cm-1, a scattering rate of 1/{\tau} = 360 cm-1 and a low-frequency extra Drude component were observed. Spectral weight analysis revealed that the SC gap and pseudogap are formed from the same Drude band. This means that the pseudogap is a gap structure observed as a result of a continuous temperature evolution of the SC gap observed below Tc. This provides clear experimental evidence for the preformed Cooper pair model.Comment: 15 pages, 4 figure

    Optical Evidence of Itinerant-Localized Crossover of 4f4f Electrons in Cerium Compounds

    Full text link
    Cerium (Ce)-based heavy-fermion materials have a characteristic double-peak structure (mid-IR peak) in the optical conductivity [σ(ω)\sigma(\omega)] spectra originating from the strong conduction (cc)--ff electron hybridization. To clarify the behavior of the mid-IR peak at a low cc-ff hybridization strength, we compared the σ(ω)\sigma(\omega) spectra of the isostructural antiferromagnetic and heavy-fermion Ce compounds with the calculated unoccupied density of states and the spectra obtained from the impurity Anderson model. With decreasing cc-ff hybridization intensity, the mid-IR peak shifts to the low-energy side owing to the renormalization of the unoccupied 4f4f state, but suddenly shifts to the high-energy side owing to the ff-ff on-site Coulomb interaction at a slight localized side from the quantum critical point (QCP). This finding gives us information on the change in the electronic structure across QCP.Comment: 6 pages, 4 figures. To appear in JPSJ (Letters

    Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates

    Full text link
    We investigate thermal relaxation of superfluid turbulence in a highly oblate Bose-Einstein condensate. We generate turbulent flow in the condensate by sweeping the center region of the condensate with a repulsive optical potential. The turbulent condensate shows a spatially disordered distribution of quantized vortices and the vortex number of the condensate exhibits nonexponential decay behavior which we attribute to the vortex pair annihilation. The vortex-antivortex collisions in the condensate are identified with crescent-shaped, coalesced vortex cores. We observe that the nonexponential decay of the vortex number is quantitatively well described by a rate equation consisting of one-body and two-body decay terms. In our measurement, we find that the local two-body decay rate is closely proportional to T2/μT^2/\mu, where TT is the temperature and μ\mu is the chemical potential.Comment: 7 pages, 9 figure

    Natural History of Invasive Papillary Breast Carcinoma Followed for 10 Years: A Case Report and Literature Review

    Get PDF
    Diachronic research on untreated breast cancer completely depends on past medical records when no more recent, advanced methods are available. Herein, we report a case of invasive papillary breast carcinoma followed for 10 years in a 59-year-old woman who refused any treatment. The diagnosis was based on core needle biopsies. At the patient’s first visit in July 2006, the tumor measured 10.4 × 7.2 × 3.5 cm. It was staged as IIIB (T4bN1). In May 2016, the tumor was staged as IIIC (T4bN3a). In the past 10 years, the tumor has increased to 12.1 × 9.0 × 4.2 cm. However, a whole-body bone scan and 18F-FDG PET/CT showed no evidence of distant metastasis. Immunohistochemistry results, corresponding to biopsies taken at subsequent examinations, have remained unaltered since 2006. The tumor was estrogen/progesterone receptor-positive and C-erbB2 expression was not detected. The Ki-67 labeling index was around 10%

    Observation of a Geometric Hall Effect in a Spinor Bose-Einstein Condensate with a Skyrmion Spin Texture

    Full text link
    For a spin-carrying particle moving in a spatially varying magnetic field, effective electromagnetic forces can arise due to the geometric phase associated with adiabatic spin rotation of the particle. We report the observation of a geometric Hall effect in a spinor Bose-Einstein condensate with a skyrmion spin texture. Under translational oscillations of the spin texture, the condensate resonantly develops a circular motion in a harmonic trap, demonstrating the existence of an effective Lorentz force. When the condensate circulates, quantized vortices are nucleated in the boundary region of the condensate and the vortex number increases over 100 without significant heating. We attribute the vortex nucleation to the shearing effect of the effective Lorentz force from the inhomogeneous effective magnetic field.Comment: 9 pages, 11 figure
    corecore