5,404 research outputs found

    V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map

    Full text link
    Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human body joints, via 2D convolutional neural networks (CNNs). The first weakness of this approach is the presence of perspective distortion in the 2D depth map. While the depth map is intrinsically 3D data, many previous methods treat depth maps as 2D images that can distort the shape of the actual object through projection from 3D to 2D space. This compels the network to perform perspective distortion-invariant estimation. The second weakness of the conventional approach is that directly regressing 3D coordinates from a 2D image is a highly non-linear mapping, which causes difficulty in the learning procedure. To overcome these weaknesses, we firstly cast the 3D hand and human pose estimation problem from a single depth map into a voxel-to-voxel prediction that uses a 3D voxelized grid and estimates the per-voxel likelihood for each keypoint. We design our model as a 3D CNN that provides accurate estimates while running in real-time. Our system outperforms previous methods in almost all publicly available 3D hand and human pose estimation datasets and placed first in the HANDS 2017 frame-based 3D hand pose estimation challenge. The code is available in https://github.com/mks0601/V2V-PoseNet_RELEASE.Comment: HANDS 2017 Challenge Frame-based 3D Hand Pose Estimation Winner (ICCV 2017), Published at CVPR 201

    Hierarchical Coding for Distributed Computing

    Full text link
    Coding for distributed computing supports low-latency computation by relieving the burden of straggling workers. While most existing works assume a simple master-worker model, we consider a hierarchical computational structure consisting of groups of workers, motivated by the need to reflect the architectures of real-world distributed computing systems. In this work, we propose a hierarchical coding scheme for this model, as well as analyze its decoding cost and expected computation time. Specifically, we first provide upper and lower bounds on the expected computing time of the proposed scheme. We also show that our scheme enables efficient parallel decoding, thus reducing decoding costs by orders of magnitude over non-hierarchical schemes. When considering both decoding cost and computing time, the proposed hierarchical coding is shown to outperform existing schemes in many practical scenarios.Comment: 7 pages, part of the paper is submitted to ISIT201

    Bespoke: A Block-Level Neural Network Optimization Framework for Low-Cost Deployment

    Full text link
    As deep learning models become popular, there is a lot of need for deploying them to diverse device environments. Because it is costly to develop and optimize a neural network for every single environment, there is a line of research to search neural networks for multiple target environments efficiently. However, existing works for such a situation still suffer from requiring many GPUs and expensive costs. Motivated by this, we propose a novel neural network optimization framework named Bespoke for low-cost deployment. Our framework searches for a lightweight model by replacing parts of an original model with randomly selected alternatives, each of which comes from a pretrained neural network or the original model. In the practical sense, Bespoke has two significant merits. One is that it requires near zero cost for designing the search space of neural networks. The other merit is that it exploits the sub-networks of public pretrained neural networks, so the total cost is minimal compared to the existing works. We conduct experiments exploring Bespoke's the merits, and the results show that it finds efficient models for multiple targets with meager cost.Comment: This is the extended version of our AAAI-2023 paper (https://ojs.aaai.org/index.php/AAAI/article/view/26020

    The full repertoire of Drosophila gustatory receptors for detecting an aversive compound.

    Get PDF
    The ability to detect toxic compounds in foods is essential for animal survival. However, the minimal subunit composition of gustatory receptors required for sensing aversive chemicals in Drosophila is unknown. Here we report that three gustatory receptors, GR8a, GR66a and GR98b function together in the detection of L-canavanine, a plant-derived insecticide. Ectopic co-expression of Gr8a and Gr98b in Gr66a-expressing, bitter-sensing gustatory receptor neurons (GRNs) confers responsiveness to L-canavanine. Furthermore, misexpression of all three Grs enables salt- or sweet-sensing GRNs to respond to L-canavanine. Introduction of these Grs in sweet-sensing GRNs switches L-canavanine from an aversive to an attractive compound. Co-expression of GR8a, GR66a and GR98b in Drosophila S2 cells induces an L-canavanine-activated nonselective cation conductance. We conclude that three GRs collaborate to produce a functional L-canavanine receptor. Thus, our results clarify the full set of GRs underlying the detection of a toxic tastant that drives avoidance behaviour in an insect
    • …
    corecore