879 research outputs found

    Reverse Doppler Effect of Sound

    Full text link
    We report observation of reverse Doppler effect in a double negative acoustic metamaterial. The metamaterial exhibited negative phase velocity and positive group velocity. The dispersion relation is such that the wavelength corresponding to higher frequency is longer. We observed that the frequency was down-shifted for the approaching source, and up-shifted when the source receded

    Shear Current Effects on Monochromatic Water Waves Crossing Trenches

    Get PDF
    The reflection coefficients of monochromatic water waves over trenches with shear current are estimated analytically. The diffraction of waves by an abrupt depth change and shear current is formulated by the matched eigenfunction expansion method. The proper number of steps and evanescent modes are proposed by a series of convergence tests. The accuracy of the predicted reflection coefficients is checked by estimating the wave energy. Reflection and transmission characteristics are studied for various shear current conditions. The different combinations of strength, width of shear current, and incident wave angle with constant water depth topography are examined. The optimal figure of the trench with shear current is obtained by estimating the reflection coefficients for various sloped transitions. The resonant reflection of the water waves is found by multiarrayed optimal trenches and the interaction of sinusoidally varying topography with shear current

    The many faces of solitary fibrous tumor; diversity of histological features, differential diagnosis and role of molecular studies and surrogate markers in avoiding misdiagnosis and predicting the behavior

    Get PDF
    Background: Solitary Fibrous Tumor (SFT) is a distinct soft tissue neoplasm associated with NAB2-STAT6 gene fusion. It can involve a number of anatomic sites and exhibits a wide spectrum of histological features.Main body: Apart from diversity in morphological features seen even in conventional SFT, two histologic variants (fat-forming and giant cell-rich) are also recognized. In addition, a malignant form and dedifferentiation are well recognized. Owing to diverse histological features and involvement of diverse anatomic locations, SFT can mimic other soft tissue neoplasms of different lineages including schwannoma, spindle cell lipoma, dermatofibrosarcoma protuberans, liposarcoma, gastrointestinal stromal tumor (GIST), malignant peripheral nerve sheath tumor (MPNST), and synovial sarcoma. SFT is classified as an intermediate (rarely metastasizing) tumor according to World Health Organization Classification of Tumors of Soft tissue and Bone, 5th edition. The management and prognosis of SFT differs from its malignant mimics and correct diagnosis is therefore important. Although SFT expresses a distinct immunohistochemical (IHC) profile, the classic histomorphological and IHC profile is not seen in all cases and diagnosis can be challenging. NAB2-STAT6 gene fusion has recently emerged as a sensitive and specific molecular marker and its IHC surrogate marker signal transducer and activator of transcription 6 (STAT6) has also shown significant sensitivity and specificity. However, few recent studies have reported STAT6 expression in other soft tissue neoplasms.Conclusion: This review will focus on describing the diversity of histological features of SFT, differential diagnoses and discussing the features helpful in distinguishing SFT from its histological mimics

    Acoustic metamaterial exhibiting four different sign combinations of density and modulus

    Full text link
    We fabricated a double negative acoustic metamaterial which consisted of Helmholtz resonators and membranes. Experimental data on the transmission and dispersion relation are presented. The system exhibits three frequencies where the acoustic state makes sharp transitions from density negative ({\rho} -NG) to double negative (DNG), modulus negative (B-NG), and double positive (DPS) in sequence with the frequency. We observed a wide range of negative refractive index from -0.06 to -3.7 relative to air, which will allow for new acoustic transformation techniques.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    High-resolution near-IR Spectral mapping with H2_{2} and [Fe II] lines of Multiple Outflows around LkHα\alpha 234

    Full text link
    We present a high-resolution, near-IR spectroscopic study of multiple outflows in the LkHα\alpha 234 star formation region using the Immersion GRating INfrared Spectrometer (IGRINS). Spectral mapping over the blueshifted emission of HH 167 allowed us to distinguish at least three separate, spatially overlapped, outflows in H2{_2} and [Fe II] emission. We show that the H2{_2} emission represents not a single jet, but complex multiple outflows driven by three known embedded sources: MM1, VLA 2, and VLA 3. There is a redshifted H2{_2} outflow at a low velocity, \VLSR << ++50 {\kms}, with respect to the systemic velocity of \VLSR == −-11.5 {\kms}, that coincides with the H2{_2}O masers seen in earlier radio observations two arcseconds southwest of VLA 2. We found that the previously detected [Fe II] jet with ∣|\VLSR∣| >> 100 {\kms} driven by VLA 3B is also detected in H2{_2} emission, and confirm that this jet has a position angle about 240°\degree. Spectra of the redshifted knots at 14\arcsec−-65\arcsec northeast of LkHα\alpha 234 are presented for the first time. These spectra also provide clues to the existence of multiple outflows. We detected high-velocity (50−-120 {\kms}) H2{_2} gas in the multiple outflows around LkHα\alpha 234. Since these gases move at speeds well over the dissociation velocity (>> 40 {\kms}), the emission must originate from the jet itself rather than H2{_2} gas in the ambient medium. Also, position-velocity diagrams and excitation diagram indicate that emission from knot C in HH 167 come from two different phenomena, shocks and photodissociation.Comment: 32 pages, 12 figures, 2 tables, Accepted for publication in the Astrophysical Journa

    Enhanced Solubility of the Support in an FDM-Based 3D Printed Structure Using Hydrogen Peroxide under Ultrasonication

    Get PDF
    Fused deposition modeling (FDM), one of the archetypal 3D printing processes, typically requires support structures matched to printed model parts that principally have undercut or overhung features. Thus, the support removal is an essential postprocessing step after the FDM process. Here, we present an efficient and rapid method to remove the support part of an FDM-manufactured product using the phenomenon of oxidative degradation of hydrogen peroxide. This mechanism was significantly effective on polyvinyl alcohol (PVA), which has been widely used as a support material in the FDM process. Compared to water, hydrogen peroxide provided a two times faster dissolution rate of the PVA material. This could be increased another two times by applying ultrasonication to the solvent. In addition to the rapidness, we confirmed that amount of the support residues removed was enhanced, which was essentially caused by the surface roughness of the FDM-fabricated part. Furthermore, we demonstrated that there was no deterioration with respect to the mechanical properties or shape geometries of the obtained 3D printed parts. Taken together, these results are expected to help enhance the productivity of FDM by reducing the postprocessing time and to allow the removal of complicated and fine support structures, thereby improving the design capability of the FDM technique
    • …
    corecore