2,244 research outputs found

    Correlation between periostin and SNCG and esophageal cancer invasion, infiltration and apoptosis

    Get PDF
    AbstractObjectiveTo investigate the correlation between periostin and SNCG and esophageal cancer invasion, infiltration and apoptosis.MethodsA total of 78 cases esophageal surgical resection specimens were collected, expression of periostin and SNCG in esophageal cancer were detected. Effect of periostin and SNCG in esophageal carcinoma invasion and infiltration was analyzed.ResultsThe upregulated rate of periostin had significant difference in esophageal cancer tissues (39.74%), adjacent tissues (17.86%) and normal tissues (0.00%); The positive expression rates of SNCG had significant difference in esophageal cancer tissues (61.54%), adjacent tissues (32.14%) and normal tissues (1.96%); The upregulated rate of periostin had a significant correlation with lymph node metastasis, adventitia invasion, TNM stage; The positive expression rates of SNCG had a significant correlation with differentiation degree, lymph node metastasis, adventitia invasion, TNM stage; Apoptosis index of the positive of expression of SNCG of esophageal cancer tissue (4.541±2.267) was significantly lower than that of the negative expression (7.316±2.582) (P<0.05).ConclusionsSNCG may play an important role in invasion, infiltration and apoptosis of esophageal cancer and serve as target spots in the targeted therapy of esophageal cancer

    Development and evaluation of a prototype non-woven fabric filter for purification of malaria-infected blood

    Get PDF
    BACKGROUND: Many malaria-related studies depend on infected red blood cells (iRBCs) as fundamental material; however, infected blood samples from human or animal models include leukocytes (white blood cells or WBCs), especially difficult to separate from iRBCs in cases involving Plasmodium vivax. These host WBCs are a source of contamination in biology, immunology and molecular biology studies, requiring their removal. Non-woven fabric (NWF) has the ability to adsorb leukocytes and is already used as filtration material to deplete WBCs for blood transfusion and surgery. The present study describes the development and evaluation of a prototype NWF filter designed for purifying iRBCs from malaria-infected blood. METHODS: Blood samples of P. vivax patients were processed separately by NWF filter and CF11 column methods. WBCs and RBCs were counted, parasite density, morphology and developing stage was checked by microscopy, and compared before and after treatment. The viability of filtrated P. vivax parasites was examined by in vitro short-term cultivation. RESULTS: A total of 15 P. vivax-infected blood samples were treated by both NWF filter and CF11 methods. The WBC removal rate of the NWF filter method was 99.03%, significantly higher than the CF11 methods (98.41%, P < 0.01). The RBC recovery rate of the NWF filter method was 95.48%, also significantly higher than the CF11 method (87.05%, P < 0.01). Fourteen in vitro short-term culture results showed that after filter treatment, P. vivax parasite could develop as normal as CF11 method, and no obvious density, developing stage difference were fund between two methods. CONCLUSIONS: NWF filter filtration removed most leukocytes from malaria-infected blood, and the recovery rate of RBCs was higher than with CF11 column method. Filtrated P. vivax parasites were morphologically normal, viable, and suitable for short-term in vitro culture. NWF filter filtration is simple, fast and robust, and is ideal for purification of malaria-infected blood

    Hybrid Strangeon Stars

    Full text link
    It was conjectured that the basic units of the ground state of bulk strong matter may be strange-clusters called strangeons, and they can form self-bound strangeon stars that are highly compact. Strangeon stars can develop a strange quark matter (SQM) core at high densities, particularly in the color-flavor-locking phase, yielding a branch of hybrid strangeon stars. We explore the stellar structure and astrophysical implications of hybrid strangeon stars. We find that hybrid strangeon stars can meet various astrophysical constraints on pulsar masses, radii, and tidal deformabilities. Finally, we show that the strangeon-SQM mixed phase is not preferred if the charge-neutrality condition is imposed at the strangeon-SQM transition region.Comment: 10 pages, 4 figure

    Differential isospin-fractionation in dilute asymmetric nuclear matter

    Full text link
    The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes {\it smaller} than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction.Comment: Rapid Communication, Phys. Rev. C (2007) in pres

    M2I-1 disrupts the in vivo interaction between CDC20 and MAD2 and increases the sensitivities of cancer cell lines to anti-mitotic drugs via MCL-1s

    Get PDF
    Background Drugs such as taxanes, epothilones, and vinca alkaloids are widely used in the treatment of breast, ovarian, and lung cancers but come with major side effects such as neuropathy and loss of neutrophils and as single agents have a lack of efficacy. M2I-1 (MAD2 inhibitor-1) has been shown to disrupt the CDC20-MAD2 interaction, and consequently, the assembly of the mitotic checkpoint complex (MCC). Results We report here that M2I-1 can significantly increase the sensitivity of several cancer cell lines to anti-mitotic drugs, with cell death occurring after a prolonged mitotic arrest. In the presence of nocodazole or taxol combined with M2I-1 cell death is triggered by the premature degradation of Cyclin B1, the perturbation of the microtubule network, and an increase in the level of the pro-apoptotic protein MCL-1s combined with a marginal increase in the level of NOXA. The elevated level of MCL-1s and the marginally increased NOXA antagonized the increased level of MCL-1, a pro-survival protein of the Bcl-2 family. Conclusion Our results provide some important molecular mechanisms for understanding the relationship between the mitotic checkpoint and programmed cell death and demonstrate that M2I-1 exhibits antitumor activity in the presence of current anti-mitotic drugs such as taxol and nocodazole and has the potential to be developed as an anticancer agent
    corecore