12,757 research outputs found

    Pinning modes and interlayer correlation in high magnetic field bilayer Wigner solids

    Full text link
    We report studies of pinning mode resonances in the low total Landau filling (\nu) Wigner solid of a series of bilayer hole samples with negligible interlayer tunneling, and with varying interlayer separation d. Comparison of states with equal layer densities (p,p) to single layer states (p,0) produced {in situ} by biasing, indicates that there is interlayer quantum correlation in the solid at small d. Also, the resonance frequency at small d is decreased just near \nu=1/2 and 2/3, indicating the importance in the solid of correlations related to those in the fractional quantum Hall effects

    Determination of the superconducting gap in near optimally doped Bi_2Sr_{2-x}La_xCuO_{6+\delta} (x ~ 0.4) from low-temperature specific heat

    Full text link
    Low-temperature specific heat of the monolayer high-Tc superconductor Bi_2Sr_{2-x}La_xCuO_{6+\delta} has been measured close to the optimal doping point (x ~ 0.4) in different magnetic fields. The identification of both a T^2 term in zero field and a \sqrt{H} dependence of the specific heat in fields is shown to follow the theoretical prediction for d-wave pairing, which enables us to extract the slope of the superconducting gap in the vicinity of the nodes (v_{\Delta}, which is proportional to the superconducting gap \Delta_0 at the antinodes according to the standard d_{x^2-y^2} gap function). The v_{\Delta} or \Delta_0 (~ 12 meV) determined from this bulk measurement shows close agreement with that obtained from spectroscopy or tunneling measurements, which confirms the simple d-wave form of the superconducting gap.Comment: 5 pages, 4 figures, 1 tabl

    Photon-number-solving Decoy State Quantum Key Distribution

    Full text link
    In this paper, a photon-number-resolving decoy state quantum key distribution scheme is presented based on recent experimental advancements. A new upper bound on the fraction of counts caused by multiphoton pulses is given. This upper bound is independent of intensity of the decoy source, so that both the signal pulses and the decoy pulses can be used to generate the raw key after verified the security of the communication. This upper bound is also the lower bound on the fraction of counts caused by multiphoton pulses as long as faint coherent sources and high lossy channels are used. We show that Eve's coherent multiphoton pulse (CMP) attack is more efficient than symmetric individual (SI) attack when quantum bit error rate is small, so that CMP attack should be considered to ensure the security of the final key. finally, optimal intensity of laser source is presented which provides 23.9 km increase in the transmission distance. 03.67.DdComment: This is a detailed and extended version of quant-ph/0504221. In this paper, a detailed discussion of photon-number-resolving QKD scheme is presented. Moreover, the detailed discussion of coherent multiphoton pulse attack (CMP) is presented. 2 figures and some discussions are added. A detailed cauculation of the "new" upper bound 'is presente

    Model-Based Edge Detector for Spectral Imagery Using Sparse Spatiospectral Masks

    Get PDF
    Two model-based algorithms for edge detection in spectral imagery are developed that specifically target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra associated with candidate objects in a scene, a small set of spectral-band ratios, which most profoundly identify the edge between each pair of materials, are selected to define a edge signature. The bands that form the edge signature are fed into a spatial mask, producing a sparse joint spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair by matching the response of the operator at every pixel with the edge signature for the pair of materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively accentuates distinctive features before applying the spatiospectral operator. Both algorithms are extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the spatiospectral operator, the algorithms enable significant levels of data compression in band selection. In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect to those required by the MCG edge detector

    Quantum Tomographic Cryptography with a Semiconductor Single Photon Source

    Full text link
    In this paper we analyze the security of the so-called quantum tomographic cryptography with the source producing entangled photons via an experimental scheme proposed in Phys. Rev. Lett. 92, 37903 (2004). We determine the range of the experimental parameters for which the protocol is secure against the most general incoherent attacks

    Causal links between dorsal medial superior temporal area neurons and multisensory heading perception

    Get PDF
    The dorsal medial superior temporal area (MSTd) in the extrastriate visual cortex is thought to play an important role in heading perception because neurons in this area are tuned to both optic flow and vestibular signals. MSTd neurons also show significant correlations with perceptual judgments during a fine heading direction discrimination task. To test for a causal link with heading perception, we used microstimulation and reversible inactivation techniques to artificially perturb MSTd activity while monitoring behavioral performance. Electrical microstimulation significantly biased monkeys’ heading percepts based on optic flow, but did not significantly impact vestibular heading judgments. The latter result may be due to the fact that vestibular heading preferences in MSTd are more weakly clustered than visual preferences and multi-unit tuning for vestibular stimuli is weak. Reversible chemical inactivation, on the other hand, increased behavioral thresholds when heading judgments were based on either optic flow or vestibular cues, although the magnitude of the effects was substantially stronger for optic flow. Behavioral deficits in a combined visual/vestibular stimulus condition were intermediate between the single cue effects. Despite deficits in discrimination thresholds, animals were able to combine visual and vestibular cues near optimally, even after large bilateral muscimol injections into MSTd. Simulations show that the overall pattern of results following inactivation is consistent with a mixture of contributions from MSTd and other areas with vestibular-dominant tuning for heading. Our results support a causal link between MSTd neurons and multisensory heading perception but suggest that other multisensory brain areas also contribute

    An Elemental Assay of Very, Extremely, and Ultra Metal-Poor Stars

    Get PDF
    We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor (VMP; [Fe/H] < -2.0) stars, 12 of which are extremely metal-poor (EMP; [Fe/H] < -3.0), and 4 of which are ultra metal-poor (UMP; [Fe/H] < -4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the alpha-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars -- our program stars include eight that are considered "normal" metal-poor stars, six CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-rr stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li-depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < -3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a "floor" in the absolute Ba abundances of CEMP-no stars at A(Ba)~ -2.0.Comment: 20 pages, 16 figures, Accepted for publication in Ap

    Health information behavior in families: Supportive or irritating?

    Full text link
    We report preliminary results of a mixed methods study of relationships between family‐based information behavior and social support in chronic illness. Twenty‐four participants (12 people with HIV/AIDS (PHAs) and 12 people with diabetes) completed surveys, visualized their family‐based social support networks, and participated in in‐depth, qualitative interviews. Findings revealed that our sample of people with diabetes had significantly larger family support networks than did PHAs. These differences seem linked to greater interpersonal constraints in talking about HIV/AIDS in families. Yet, the two groups did not differ in terms of perceived social support (PSS), frequency of collaborative information behavior (CIB), or use of information obtained collaboratively. However, a surprising relationship between CIB and PSS emerged among diabetics but not PHAs: the greater the frequency of CIB with family members, the less supportive they were perceived to be. This seems rooted in the prevalence of attempted influence and interference by diabetics' family members. Nevertheless, among both PHAs and diabetics, a significant overlap existed between receipt of informational and emotional support. Indeed, information sharing and emotional support could be the same in interactions such as questions of concern, goal attainment, and caring forwards. This study is among the first to document differences in social support and CIB among people with different diseases, pointing to the merit of information services and systems differentiated by disease. The overlap between informational and emotional support suggests the value of organizing, presenting, or rating health information according to emotional valence. Demonstrating that CIB may have negative effects challenges information scientists to reconsider whether receipt of information is always positive. Health information behavior in families therefore appears more complex than has been previously shown.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90033/1/14504801070_ftp.pd
    corecore