8,926 research outputs found

    Rich variety of defects in ZnO via an attractive interaction between O-vacancies and Zn-interstitials

    Full text link
    As the concentration of intrinsic defects becomes sufficiently high in O-deficient ZnO, interactions between defects lead to a significant reduction in their formation energies. We show that the formation of both O-vacancies and Zn-interstitials becomes significantly enhanced by a strong attractive interaction between them, making these defects an important source of n-type conductivity in ZnO.Comment: 12 pages, 4 figure

    Letters (1979): Correspondence 56

    Get PDF

    Photometric defocus observations of transiting extrasolar planets

    Full text link
    We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of order sub-millimagnitude over several hours for a V ∼\sim 10 host star typical for transiting planets detected from ground-based survey facilities. We compare our results with transit observations with the telescope operated in in-focus mode. High photometric precision is obtained due to the collection of a larger amount of photons resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by probing the same pixels on the CCD. Furthermore, a longer exposure time helps reducing the effect of scintillation noise which otherwise has a significant effect for small-aperture telescopes operated in in-focus mode. Finally we present the results of modelling four light-curves for which a root-mean-square scatter of 0.70 to 2.3 milli-magnitudes have been achieved.Comment: 12 pages, 11 figures, 5 tables. Submitted to Journal of Astronomy and Space Sciences (JASS

    New attractor mechanism for spherically symmetric extremal black holes

    Full text link
    We introduce a new attractor mechanism to find the entropy for spherically symmetric extremal black holes. The key ingredient is to find a two-dimensional (2D) dilaton gravity with the dilaton potential V(ϕ)V(\phi). The condition of an attractor is given by ∇2ϕ=V(ϕ0)\nabla^2\phi=V(\phi_0) and Rˉ2=−V′(ϕ0)\bar{R}_2=-V^{\prime}(\phi_0) and for a constant dilaton ϕ=ϕ0 \phi=\phi_0, these are also used to find the location of the degenerate horizon r=rer=r_{e} of an extremal black hole. As a nontrivial example, we consider an extremal regular black hole obtained from the coupled system of Einstein gravity and nonlinear electrodynamics. The desired Bekenstein-Hawking entropy is successfully recovered from the generalized entropy formula combined with the 2D dilaton gravity, while the entropy function approach does not work for obtaining this entropy.Comment: 20 pages, 4 figures, Accepted for publication in Physical Review D. This version includes revisions suggested by the refere

    Quantum and Classical Spins on the Spatially Distorted Kagome Lattice: Applications to Volborthite

    Full text link
    In Volborthite, spin-1/2 moments form a distorted Kagom\'e lattice, of corner sharing isosceles triangles with exchange constants JJ on two bonds and J′J' on the third bond. We study the properties of such spin systems, and show that despite the distortion, the lattice retains a great deal of frustration. Although sub-extensive, the classical ground state degeneracy remains very large, growing exponentially with the system perimeter. We consider degeneracy lifting by thermal and quantum fluctuations. To linear (spin wave) order, the degeneracy is found to stay intact. Two complementary approaches are therefore introduced, appropriate to low and high temperatures, which point to the same ordered pattern. In the low temperature limit, an effective chirality Hamiltonian is derived from non-linear spin waves which predicts a transition on increasing J′/JJ'/J, from 3×3\sqrt 3\times \sqrt 3 type order to a new ferrimagnetic {\em striped chirality} order with a doubled unit cell. This is confirmed by a large-N approximation on the O(nn) model on this lattice. While the saddle point solution produces a line degeneracy, O(1/n)O(1/n) corrections select the non-trivial wavevector of the striped chirality state. The quantum limit of spin 1/2 on this lattice is studied via exact small system diagonalization and compare well with experimental results at intermediate temperatures. We suggest that the very low temperature spin frozen state seen in NMR experiments may be related to the disconnected nature of classical ground states on this lattice, which leads to a prediction for NMR line shapes.Comment: revised, section V about exact diagonalization is extensively rewritten, 17 pages, 11 figures, RevTex 4, accepted by Phys. Rev.

    Thermodynamic duality between RN black hole and 2D dilaton gravity

    Full text link
    All thermodynamic quantities of the Reissner-Nordstr\"om (RN) black hole can be obtained from the dilaton and its potential of two dimensional (2D) dilaton gravity. The dual relations of four thermodynamic laws are also established. Furthermore, the near-horizon thermodynamics of the extremal RN black hole is completely described by the Jackiw-Teitelboim theory which is obtained by perturbing around the AdS2_2-horizon.Comment: 10 pages, 3 figures, version accepted by MPL
    • …
    corecore