6,787 research outputs found

    Efficiency Amongst China’s Banks:A DEA Analysis Five Years after WTO Entry

    Get PDF
    WTO entry in 2001 heralded a new stage in the reform of China’s banking sector. With the reality that foreign banks would be extended national treatment by the end of 2006, China’s banks faced the imperative to reform in earnest. They began reforms from a variety of different starting points and have pursued a variety of different reform approaches. Five years on, this paper assesses efficiency levels in 11 of China’s most prominent banks. The results, obtained using Data Envelopment Analysis (DEA), suggest that differences in efficiency levels are actually quite small. On the one hand, this finding is encouraging because it suggests that few of China’s major banks lag behind the pack. On the other hand, it also implies that efficiency levels almost certainly do lag in China’s less prominent banks, which together still account for more than 40 per cent of total banking system assets.

    Robustness and modular structure in networks

    Get PDF
    Complex networks have recently attracted much interest due to their prevalence in nature and our daily lives [1, 2]. A critical property of a network is its resilience to random breakdown and failure [3-6], typically studied as a percolation problem [7-9] or by modeling cascading failures [10-12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates. If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory.Comment: 14 pages, 9 figure

    Link communities reveal multiscale complexity in networks

    Full text link
    Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein-protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.Comment: Main text and supplementary informatio

    Unprecedented spin localisation in a metal-metal bonded dirhenium complex

    Get PDF
    he molecular and electronic structure of edge-sharing bioctahedral [N(n-Bu)4]3[Re2(mnt)5] is reported here. Despite the short intermetal bond length of 2.6654(2) Ã… with computed bond order of 1.2, the unpaired electron is localised by the asymmetric ligand distribution, as demonstrated by its remarkable EPR spectrum

    Asymptotic analysis of silicon based Bragg fibers

    Get PDF
    We developed an asymptotic formalism that fully characterizes the propagation and loss properties of a Bragg fiber with finite cladding layers. The formalism is subsequently applied to miniature air-core Bragg fibers with Silicon-based cladding mirrors. The fiber performance is analyzed as a function of the Bragg cladding geometries, the core radius and the material absorption. The problems of fiber core deformation and other defects in Bragg fibers are also addressed using a finite-difference time-domain analysis and a Gaussian beam approximation, respectively

    Modal analysis of Bragg onion resonators

    Get PDF
    From analysis of the high Q modes in a Bragg onion resonator with an omnidirectional reflector cladding, we establish a close analogy between such a resonator and a spherical hollow cavity in perfect metal. We demonstrate that onion resonators are ideal for applications that require a large spontaneous-emission factor ß, such as thresholdless lasers and single-photon devices
    • …
    corecore