125 research outputs found

    Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia

    Get PDF
    Three clinical Pseudomonas aeruginosa isolates (WCH2677, WCH2813, and WCH2837) isolated from the Women's and Children's Hospital, Adelaide, Australia, produced a metallo-β-lactamase (MBL)-positive Etest result. All isolates were PCR negative for known MBL genes. A gene bank was created, and an MBL gene, designated bla, was cloned and fully characterized. The encoded enzyme, AIM-1, is a group B3 MBL that has the highest level of identity to THIN-B and L1. It is chromosomal and flanked by two copies (one intact and one truncated) of an ISCR element, ISCR15. Southern hybridization studies indicated the movement of both ISCR15 and bla within the three different clinical isolates. AIM-1 hydrolyzes most β-lactams, with the exception of aztreonam and, to a lesser extent, ceftazidime; however, it possesses significantly higher k values for cefepime and carbapenems than most other MBLs. AIM-1 was the first mobile group B3 enzyme detected and signals further problems for already beleaguered antimicrobial regimes to treat serious P. aeruginosa and other Gram-negative infections

    Prevalence of Inducible Clindamycin Resistance in Staphylococcal Isolates at a Korean Tertiary Care Hospital

    Get PDF
    Clindamycin resistance in Staphylococcus species can be either constitutive or inducible. Inducible resistance cannot be detected by the conventional antimicrobial susceptibility test. In this study, we determined the prevalence of inducible clindamycin resistance in staphylococcal isolates at a Korean tertiary care hospital. Between February and September 2004, 1,519 isolates of Staphylococcus aureus and 1,043 isolates of coagulase-negative staphylococci (CNS) were tested for inducible resistance by the D-zone test. Overall, 17% of MRSA, 84% of MSSA, 37% of MRCNS, and 70% of MSCNS were susceptible to clindamycin. Of the erythromycin non-susceptible, clindamycin-susceptible isolates, 32% of MRSA, 35% of MSSA, 90% of MRCNS, and 94% of MSCNS had inducible clindamycin resistance. Inducible clindamycin resistance in staphylococci was highly prevalent in Korea. This study indicates importance of the D-zone test in detecting inducible clindamycin resistance in staphylococci to aid in the optimal treatment of patients

    Application of the Whole Genome-Based Bacterial Identification System, TrueBac ID, Using Clinical Isolates That Were Not Identified With Three Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Systems

    Get PDF
    Background: Next-generation sequencing is increasingly used for taxonomic identification of pathogenic bacterial isolates. We evaluated the performance of a newly introduced whole genome-based bacterial identification system, TrueBac ID (ChunLab Inc., Seoul, Korea), using clinical isolates that were not identified by three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems and 16S rRNA gene sequencing. Methods: Thirty-six bacterial isolates were selected from a university-affiliated hospital and a commercial clinical laboratory. Species was identified by three MALDI-TOF MS systems: Bruker Biotyper MS (Bruker Daltonics, Billerica, MA, USA), VITEK MS (bioMerieux, Marcy l'Etoile, France), and ASTA MicrolDSys (ASTA Inc., Suwon, Korea). Whole genome sequencing was conducted using the Illumina MiSeq system (Illumina, San Diego, CA, USA), and genome-based identification was performed using the TrueBac ID cloud system (www.truebacid.com ). Results: TrueBac ID assigned 94% (34/36) of the isolates to known (N=25) or novel (N=4) species, genomospecies (N=3), or species group (N=2). The remaining two were identified at the genus level. Conclusions: TrueBac ID successfully identified the majority of isolates that MALDI-TOF MS failed to identify. Genome-based identification can be a useful tool in clinical laboratories, with its superior accuracy and database-driven operations.

    Increase of Ceftazidime- and Fluoroquinolone-Resistant Klebsiella pneumoniae and Imipenem-Resistant Acinetobacter spp. in Korea: Analysis of KONSAR Study Data from 2005 and 2007

    Get PDF
    PURPOSE: Antimicrobial resistance monitoring could be a useful source of information for treating and controlling nosocomial infections. We analyzed antimicrobial resistance data generated by Korean Hospitals and by a commercial laboratory in 2005 and 2007. MATERIALS AND METHODS: Susceptibility data for 2005 and 2007 were collected from 37 and 41 hospitals, respectively, and from one commercial laboratory. Intermediate susceptibility was not included in the calculation of resistance rates. RESULTS: Methicillin-resistant Staphylococcus aureus (MRSA) (64%), third-generation cephalosporin-resistant Klebsiella pneumoniae (29%), fluoroquinolone-resistant Escherichia coli (27%), Pseudomonas aeruginosa (33%), and Acinetobacter spp. (48%), and amikacin-resistant P. aeruginosa (19%) and Acinetobacter spp. (37%) were prevalent in hospitals in 2007. A gradual increase of vancomycin-resistant Enterococcus faecium and imipenem-resistant Acinetobacter spp. was observed. Higher incidences of thirdgeneration cephalosporin-resistant E. coli and K. pneumoniae and imipenemresistant P. aeruginosa were found in the commercial laboratory than in the hospitals. CONCLUSION: Methicillin-resistant S. aureus, third-generation cephalosporin- resistant K. pneumoniae, and fluoroquinolone-resistant E. coli, P. aeruginosa and Acinetobacter spp. remain prevalent in Korea, while the incidence of vancomycin-resistant E. faecium and imipenem-resistant Acinetobacter spp. has increased gradually. The higher prevalences of third-generation cephalosporinresistant E. coli and K. pneumoniae, and imipenem-resistant P. aeruginosa in the commercial laboratory are a new concern.ope

    The Characteristics of Metallo-β-Lactamase-Producing Gram-Negative Bacilli Isolated from Sputum and Urine: A Single Center Experience in Korea

    Get PDF
    Metallo-β-lactamase (MBL) production usually results in high-level resistance to most β-lactams, and a rapid spread of MBL producing major gram-negative pathogens is a matter of particular concern worldwide. However, clinical data are scarce and most studies compared MBL producer (MP) with MBL non-producer (MNP) strains which included carbapenem susceptible isolates. Therefore, we collected clinical data of patients in whom imipenem-nonsusceptible Pseudomonas aeruginosa (PA) and Acinetobacter baumannii (AB) were isolated from sputum or urine, and investigated MBL production and the risk factors related with MBL acquisition. The antimicrobial susceptibility patterns were also compared between MPs and imipenem-nonsusceptible MNPs (INMNP). Among the 176 imipenem-nonsusceptible isolates, 12 MPs (6.8%) were identified. There was no identifiable risk factor that contributed to the acquisition of MPs when compared to INMNPs, and case-fatalities were not different between the two groups. The percentage of susceptible isolates was higher among MPs for piperacilin/tazobactam and fluoroquinolones while that of ceftazidime was higher in INMNPs (p < 0.05). As regards to aztreonam, which has been known to be a uniquely stable β-lactam against MBLs, susceptibility was preserved in only two isolates (16.7%) among MPs, and was not higher than that of INMNPs (23.2%). In conclusion, the contribution of MBLs to imipenem non-susceptibility in PA/ABs isolated from sputum and urine was relatively limited, and there was no significant risk factor associated with acquisition of MPs compared with INMNPs. However, limited susceptibility to aztreonam implies that MPs may hold additional resistance mechanisms, such as extended spectrum β-lactamases, AmpC β-lactamases, or other non-enzymatic mechanisms
    corecore