18 research outputs found

    Model for Spatiotemporal Crime Prediction with Improved Deep Learning

    Get PDF
    Crime is hard to anticipate since it occurs at random and can occur anywhere at any moment, making it a difficult issue for any society to address. By analyzing and comparing eight known prediction models: Naive Bayes, Stacking, Random Forest, Lazy:IBK, Bagging, Support Vector Machine, Convolutional Neural Network, and Locally Weighted Learning – this study proposed an improved deep learning crime prediction model using convolutional neural networks and the xgboost algorithm to predict crime. The major goal of this research is to provide an improved crime prediction model based on previous criminal records. Using the Boston crime dataset, where our larceny crime dataset was extracted, exploratory data analysis (EDA) is used to uncover patterns and explain trends in crimes. The performance of the proposed model on the basis of accuracy, recall, and f-measure was 100% outperforming the other models used in this study. The analysis of the proposed model and prediction can aid security services in making better use of their resources, anticipating crime at a certain time, and serving the society better

    e-PARTICIPATORY COMMUNITY BASED APPROACH ON LANDSLIDE PREPAREDNESS AND MITIGATION

    Get PDF
    IImu pengetahuan merupakan indikator penting dalam menentukan keberkesanan susun atur strategi bagi menangani kejadian tanah runtuh. Pengetahuan untuk mengenal pasti tanda-tanda awal tanah runtuh adalah perlu bagi mereka yang tinggal terutamanya di kawasan-kawasan berisiko tinggi. Knowledge is an important indicator in an effective landslide mitigation strategy. Knowledge has to be acquired by people living in high risk areas for landslide occurrence such that they will be able to identify early signs of landslides

    Mining Of Resource Usage Using Evoc Algorithm In Grid Environment.

    Get PDF
    This paper addresses the new algorithm namely Evolving Clustering (Evoc A1goritbm) which is an improved version of Evolving Clustering Method (ECM). The algorithm bas been evaluated using three main criteria; that is dynamicity, accuracy and the ability to identify the stable cluster members

    Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach

    Get PDF
    عادة ما تكون مشكلة الجدول الزمني للمحاضرات الجامعية (UCTP) هي مشكلة تحسين الإندماجية. يستغرق الأمر جهود يدوية لعدة أيام للوصول إلى جدول زمني مفيد ، ولا تزال النتائج غير جيدة بما يكفي. تُستخدم طرق مختلفة من (الإرشاد أو الإرشاد المساعد) لحل UCTP بشكل مناسب. لكن هذه الأساليب عادةً ما تعطي حلول محدودة. يعالج إطار العمل الاسترشادي العالي هذه المشكلة المعقدة بشكل مناسب. يقترح هذا البحث استخدام محسن سرب الجسيمات استنادا على منهجية الإرشاد العالي (HH PSO) لمعالجة مشكلة الجدول الزمني للمحاضرات الجامعية (UCTP) . محسن سرب الجسيمات PSO يستخدام كطريقة ذات مستوى عالي لتحديد تسلسل الاستدلال ذي المستوى المنخفض (LLH) والذي من ناحية أخرى يستطيع توليد الحل الأمثل. لنهج المقترح يقسم الحل إلى مرحلتين (المرحلة الأولية ومرحلة التحسين). قمنا بتطوير LLH جديد يسمى "أقل عدد ممكن من الغرف المتبقية"  لجدولة الأحداث. يتم استخدام مجموعتي بيانات مسابقة الجدول الزمني الدولية (ITC)  ITC 2002 و ITC 2007 لتقييم الطريقة المقترحة. تشير النتائج الأولية  إلى أن الإرشاد منخفض المستوى المقترح يساعد في جدولة الأحداث في المرحلة الأولية. بالمقارنة مع LLH الأخرى ، الطريقة LLH المقترحة جدولت المزيد من الأحداث لـ 14 و 15 من حالات البيانات من 24 و 20 حالة بيانات من ITC 2002 و ITC 2007 ، على التوالي. تظهر الدراسة التجريبية أن HH PSO تحصل على معدل خرق أقل للقيود في سبع وستة حالات بيانات من ITC 2007 و ITC 2002 ، على التوالي. واستنتج هذا البحث أن LLH المقترحة يمكن أن تحصل على حل معقول وملائم إذا تم تحديد الأولوياتThe university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed approach generates solutions into two phases (initial and improvement). A new LLH named “least possible rooms left” has been developed and proposed to schedule events. Both datasets of international timetabling competition (ITC) i.e., ITC 2002 and ITC 2007 are used to evaluate the proposed method. Experimental results indicate that the proposed low-level heuristic helps to schedule events at the initial stage. When compared with other LLH’s, the proposed LLH schedule more events for 14 and 15 data instances out of 24 and 20 data instances of ITC 2002 and ITC 2007, respectively. The experimental study shows that HH PSO gets a lower soft constraint violation rate on seven and six data instances of ITC 2007 and ITC 2002, respectively. This research has concluded the proposed LLH can get a feasible solution if prioritized

    Design of Embedded System for Grid Handtop Computing(ESGHC)

    Get PDF
    ESGHC applies the grid computing technology which is built under a grid environmentfor handtop devices. By having ESGHC, sharing of handtop devices in terms of computational power and storage are virtually possible

    Data Transfer Management In Grid-Based Mass Storage Environment.

    Get PDF
    The drastic increase in the data requirements of scientific applications and collaborative research has resulted of transferring a large amount of data among participating sites
    corecore