49 research outputs found

    Higgs mechanism near the 5d bulk phase transition

    Get PDF
    We present a non-perturbative model of Gauge-Higgs Unification. We consider a five-dimensional pure SU(2) gauge theory with orbifold boundary conditions along the fifth dimension, such that the symmetry is reduced to U(1) at the fixed points of the orbifold action. The spectrum on the four-dimensional boundary hyperplanes includes, apart from the U(1) gauge boson, also a complex scalar, interpreted as a simplified version of the Standard Model Higgs field. The gauge theory is defined on a Euclidean lattice which is anisotropic in the extra dimension. Using the boundary Wilson Loop and the observable that represents the scalar and in the context of an expansion in fluctuations around a Mean-Field background, we show that a) near the bulk phase transition the model tends to reduce dimensionally to a four-dimensional gauge-scalar theory, b) the boundary U(1) gauge symmetry breaks spontaneously due to the broken translational invariance along the fifth dimension, c) it is possible to construct renormalized trajectories on the phase diagram along which the Higgs mass is constant as the lattice spacing is varied, d) by taking a continuum limit in the regime where the anisotropy parameter is small, it is possible to predict the existence of a Z' state with a mass around 1 TeV.Comment: 14 pages, 8 figure

    Gauge-Higgs Unification on the Lattice

    Full text link
    The simplest Gauge-Higgs Unification model is a five-dimensional SU(2) gauge theory compactified on the S^1/Z_2 orbifold, such that on the four-dimensional boundaries of space-time there is an unbroken U(1) symmetry and a complex scalar, the latter identified with the Higgs boson. Perturbatively the U(1) remains spontaneously unbroken. Earlier lattice Monte Carlo simulations revealed however that the spontaneous breaking of the U(1) does occur at the non-perturbative level. Here, we verify the Monte Carlo result via an analytical lattice Mean-Field expansion.Comment: 7 pages, 2 figures, talk given at the XXX International Symposium on Lattice Field Theory, June 24-29, 2012, Cairns, Australi

    Progress in Gauge-Higgs Unification on the Lattice

    Full text link
    We study a five-dimensional pure SU(2) gauge theory formulated on the orbifold and discretized on the lattice by means of Monte Carlo simulations. The gauge symmetry is explicitly broken to U(1) at the orbifold boundaries. The action is the Wilson plaquette action with a modified weight for the boundary U(1) plaquettes. We study the phase transition and present results for the spectrum and the shape of the static potential on the boundary. The latter is sensitive to the presence of a massive Z-boson, in good agreement with the directly measured Z-boson mass. The results may support an alternative view of the lattice orbifold (stemming from its mean-field study) as a 5d bosonic superconductor.Comment: 9 pages, 10 figures, PoS(LATTICE 2013)061; changed section 2.

    Sensitivity of the LHC to Kaluza-Klein gluon in two b-jets decay channel

    Full text link
    We study a possibility of observation of the first Kaluza-Klein (KK) excitation of gluon in a warped extra dimension model at the LHC. In our analysis, we adopt the KK gluon mass and the b-quark coupling to the KK gluon as model parameters and study the sensitivity of the ATLAS experiment to observe the KK gluon through the two bb-jets channel.Comment: Contribution to the proceedings of the Hadron Collider Physics Symposium 201

    Mean-Field Gauge Interactions in Five Dimensions II. The Orbifold

    Full text link
    We study Gauge-Higgs Unification in five dimensions on the lattice by means of the mean-field expansion. We formulate it for the case of an SU(2) pure gauge theory and orbifold boundary conditions along the extra dimension, which explicitly break the gauge symmetry to U(1) on the boundaries. Our main result is that the gauge boson mass computed from the static potential along four-dimensional hyperplanes is nonzero implying spontaneous symmetry breaking. This observation supports earlier data from Monte Carlo simulations [12].Comment: 33 pages, 8 figures; text improved; references corrected; version accepted for publication in Nucl. Phys.

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore