658 research outputs found

    Helical channel design and technology for cooling of muon beams

    Full text link
    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.Comment: 6 pp. 14th Advanced Accelerator Concepts Workshop 13-19 Jun 2010: Annapolis, Marylan

    Recent Progress of RF Cavity Study at Mucool Test Area

    Full text link
    In order to develop an RF cavity that is applicable for a muon beam cooling channel, a new facility, called Mucool Test Area (MTA) has been built at Fermilab. MTA is a unique facility whose purpose is to test RF cavities in various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla solenoid magnet, a cryogenic system including a Helium liquifier, an explosion proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall. Recent activities at MTA will be discussed in this document.Comment: 4 pp. 13th International Workshop on Neutrino Factories, Superbeams and Beta beams (NuFact11) 1-6 Aug 2011: Geneva, Switzerlan

    Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon

    Get PDF
    Recently, atomic ensemble and single photons were successfully entangled by using collective enhancement [D. N. Matsukevich, \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 040405(2005).], where atomic internal states and photonic polarization states were correlated in nonlocal manner. Here we experimentally clarified that in an ensemble of atoms and a photon system, there also exists an entanglement concerned with spatial degrees of freedom. Generation of higher-dimensional entanglement between remote atomic ensemble and an application to condensed matter physics are also discussed.Comment: 5 pages, 3 figure

    Imprint of Gravitational Lensing by Population III Stars in Gamma Ray Burst Light Curves

    Get PDF
    We propose a novel method to extract the imprint of gravitational lensing by Pop III stars in the light curves of Gamma Ray Bursts (GRBs). Significant portions of GRBs can originate in hypernovae of Pop III stars and be gravitationally lensed by foreground Pop III stars or their remnants. If the lens mass is on the order of 102−103M⊙10^2-10^3M_\odot and the lens redshift is greater than 10, the time delay between two lensed images of a GRB is ≈1\approx 1s and the image separation is ≈10ÎŒ\approx 10 \muas. Although it is difficult to resolve the two lensed images spatially with current facilities, the light curves of two images are superimposed with a delay of ≈1\approx 1 s. GRB light curves usually exhibit noticeable variability, where each spike is less than 1s. If a GRB is lensed, all spikes are superimposed with the same time delay. Hence, if the autocorrelation of light curve with changing time interval is calculated, it should show the resonance at the time delay of lensed images. Applying this autocorrelation method to GRB light curves which are archived as the {\it BATSE} catalogue, we demonstrate that more than half light curves can show the recognizable resonance, if they are lensed. Furthermore, in 1821 GRBs we actually find one candidate of GRB lensed by a Pop III star, which may be located at redshift 20-200. The present method is quite straightforward and therefore provides an effective tool to search for Pop III stars at redshift greater than 10. Using this method, we may find more candidates of GRBs lensed by Pop III stars in the data by the {\it Swift} satellite.Comment: 13 pages, 13 figures, accepted for publication in Ap

    Measuring Qutrit-Qutrit Entanglement of Orbital Angular Momentum States of an Atomic Ensemble and a Photon

    Full text link
    Three-dimensional entanglement of orbital angular momentum states of an atomic qutrit and a single photon qutrit has been observed. Their full state was reconstructed using quantum state tomography. The fidelity to the maximally entangled state of Schmidt rank 3 exceeds the threshold 2/3. This result confirms that the density matrix cannot be decomposed into ensemble of pure states of Schmidt rank 1 or 2. That is, the Schmidt number of the density matrix must be equal to or greater than 3.Comment: 5 pages, 4 figure

    The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    Get PDF
    An intense beam of muons is needed to provide a luminosity on the order of 10(34) cm(-2)s(-1) for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling - the only cooling method that works within the lifetime of the muon - and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam. Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized
    • 

    corecore