26 research outputs found

    Rotational level structure of sodium isotopes inside the "island of inversion"

    Get PDF
    The neutron-rich nuclei 33,34,35Na were studied via in-beam γ-ray spectroscopy following nucleon removal reactions from a 36Mg secondary beam at ~220 MeV/u. Excited states of 34,35Na are reported for the first time. A third transition was observed for 33Na in addition to the known 7/2+ 1 → 5/2+ 1 → 3/2+ g.s. cascade and is suggested to be the 9/2+ 1 → 7/2+ 1 transition. Similarly, a 7/2+ 1 → 5/2+ 1 → 3/2+ g.s. cascade is proposed for the decay pattern observed for 35Na. The transition energy ratios are close to expectation values for K = 3/2 rotational bands in the strong coupling limit. Comparisons to large-scale shell model calculations in the sd-p f model space support the spin-parity assignments. © The Author(s) 2014.published_or_final_versio

    ジンソクナ バイスタンダー シンパイ ソセイホウ ニヨリ トツゼンシ オ マヌガレ シャカイ フッキ デキタ コウコウセイ ノ 2 ショウレイ

    Get PDF
    Bystander CPR means that people who find cardiopulmonary arrest perform cardiopulmonary resuscitation on the spot. Quick CPR contributes to increase in the rate of returning to the society as well as one-month survival rate and neurological prognosis. We report our experience with two high school students who underwent quick Bystander CPR, avoided sudden death, and returned to the society. [Case 1] Eighteen-year-old man : He collapsed suddenly in his home. Bystander CPR was performed by his family until emergency crews arrived there. Automated external defibrillator (AED) worked twice and his heartbeat started again. In electrocardiogram, coved type ST elevation in lead V1 was observed, and he was diagnosed as Brugada syndrome. We implanted an implantable cardioverter-defibrillator. Since his condition was stable, he was discharged on the 19th day. [Case 2] Seventeen-year-old woman : She collapsed suddenly walking with her family. Her father confirmed that she had no response, and started Bystander CPR. Her father got AED quickly and AED worked once, and she started to breathe again. She was admitted to our hospital for a work-up. Torsades de pointes (TdP) was observed in monitor electrocardiogram, and her QTc time was 513 msec in 12‐lead electrocardiogram. She was diagnosed as congenital long QT syndrome because genetic test showed that she had LQT2. Her QTc time was improved (approximately 350 msec) by medication, and she was discharged on the 25th day. Utstein-style statistics in Japan shows that the rate of returning to the society can be doubled by performing Bystander CPR on patients with cardiopulmonary arrest. However, performing rate of Bystander CPR is less than 50% in Japan. In order to increase survival rate of patients with cardiopulmonary arrest for the future, it is important to inform people about CPR and to promote CPR, and in fact, we have been promoting CPR

    Structure of 136Sn and the Z = 50 magicity

    Get PDF
    The first 2+ excited state in the neutron-rich tin isotope 136Sn has been identified at 682(13) keV by measuring γ -rays in coincidence with the one proton removal channel from 137Sb. This value is higher than those known for heavier even-even N = 86 isotones, indicating the Z = 50 shell closure. It compares well to the first 2+ excited state of the lighter tin isotope 134Sn, which may suggest that the seniority scheme also holds for 136Sn. Our result confirms the trend of lower 2+ excitation energies of even-even tin isotopes beyond N = 82 compared to the known values in between the two doubly magic nuclei 100Sn and 132Sn. © The Author(s) 2014.published_or_final_versio

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    CHANGES THE STRUCTURE AND CAFFEINE ADSORPTION PROPERTY OF CALCINED MONTMORILLONITE

    No full text
    ABSTRACT: Montmorillonite is widely used as a natural adsorbent. It is generally considered that the adsorption properties of montmorillonite are largely due to its characteristic layer structure. The structure of montmorillonite changes under different temperature conditions. In this study, changes in the structure of montmorillonite with temperature are analyzed using Synchrotron X-Ray Powder Diffraction (SR-XRD). Observations are made on how montmorillonite with a modified structure is affected by the adsorption of nonionic organic compounds in a water system. The object of this study is to elucidate the mechanism by which montmorillonite adsorbs nonionic organic compounds. It is confirmed that, without calcination treatment, adsorption of caffeine on montmorillonite changes its layer structure. Calcination treatment at above 573 K causes irreversible dehydration in the structure of montmorillonite. Samples of montmorillonite calcined at 673 K and 873 K show a reduction in the amount of caffeine adsorbed. In addition, calcination treatment of montmorillonite at 673 K and 873 K causes less intercalation into the layers. These results show that adsorption of caffeine on montmorillonite without calcination treatment occurs with the intercalation of caffeine between layers of montmorillonite. On the other hand, montmorillonite calcined at 873 K is confirmed to adsorb approximately 20 % of caffeine compared to untreated montmorillonite. It suggested the possibility of the adsorption of caffeine even on the surfaces and end faces of layers of montmorillonite

    Influence of hydrophilicity on adsorption of caffeine onto montmorillonite

    No full text
    Some types of montmorillonite containing different interlayer ions were prepared and the changes in the interlayer spacings, the hydrophilicity, and the characteristics of adsorption of caffeine in solution were observed. Ion exchange treatments were performed using Li, Na, K, Rb, Cs, Mg, Ca, Sr, or Ba. As a result, Li- and Na-type montmorillonite showed larger interlayer distance (1.31–1.53 nm), than K, Rb, and Cs-type montmorillonite (1.23–1.26 nm). In the measurement of hydrophilicity using a pulse NMR-based particle interface analyzer, Li- and Na-type montmorillonite showed higher hydrophilicity. In addition, K Lang , which indicates the interaction with caffeine, was 0.25–0.32 l/mmol, which is lower than K-, Rb-, and Cs-type montmorillonite (1.14–1.60 l/mmol). It is possible that adsorption of water molecules inhibits caffeine from adsorbing. Because of the difficulty of exchange between caffeine and water molecules in interlayer of the Li- and Na-type montmorillonite, the interaction with caffeine decreased. Alternatively, another possibility is that when highly hydrophilic montmorillonite retains many water molecules, the caffeine adsorption sites are blocked by water molecules. In either case, hydrophilicity has a large influence on the adsorption of caffeine onto montmorillonite

    In vivo functional brain imaging and a therapeutic trial of L-argine in MELAS patients

    No full text
    Background: Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common type of mitochondrial disease and is characterized by stroke-like episodes (SEs), myopathy, lactic acidosis, diabetes mellitus, hearing-loss and cardiomyopathy. The causal hypotheses for SEs in MELAS presented to date are angiopathy, cytopathy and neuronal hyperexcitability. L-arginine (Arg) has been applied for the therapy in MELAS patients.Scope of review: We will introduce novel in vivo functional brain imaging techniques such as MRI and PET, and discuss the pathogenesis of SEs in MELAS patients. We will further describe here our clinical experience with L-arg therapy and discuss the dual pharmaceutical effects of this drug on MELAS.Major conclusions: Administration of L-arg to MELAS patients has been successful in reducing neurological symptoms due to acute strokes and preventing recurrences of SEs in the chronic phase. L-Arg has dual pharmaceutical effects on both angiopathy and cytopathy in MELAS.General significance: In vivo functional brain imaging promotes a better understanding of the pathogenesis and potential therapies for MELAS patients. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010

    Petrogenesis of isotopically enriched Quaternary magma with adakitic affinity associated with subduction of old lithosphere beneath central Myanmar

    Get PDF
    ミャンマーの活火山のマグマ生成メカニズムを解明 --今後も噴火する可能性の高い活火山であることが判明--. 京都大学プレスリリース. 2022-03-10.We present a model for the petrogenesis of magma with adakitic affinity in an old subduction zone, which does not involve slab melting and is constrained by new geochronological and geochemical data for Mt. Popa, the largest of three Quaternary volcanoes in central Myanmar (Popa, Monywa and Singu). The edifice is composed of Popa Plateau (0.8–0.6 Ma) with high-K rocks and a stratovolcano ( 40). The distinct K contents indicate that the adakitic magmas cannot be derived from Popa high-K rocks, but they share trace-element signatures and Sr–Nd isotope ratios with medium-K basalts from Monywa volcano. Our estimation of water contents in Popa magma reveals that primary magma for medium-K basalts was generated by partial melting of wedge mantle with normal potential temperature (TP 1330–1340 °C) under wet conditions (H₂O 0.25–0.54 wt%). Its melting was probably induced by asthenospheric upwelling that is recognized by tomographic images. Mafic adakitic magma (Mg# ~ 63, Sr/Y ~ 64) was derived from the medium-K basaltic magma in fractional crystallization of a garnet-bearing assemblage at high pressure, and felsic adakitic rocks (Mg# ~ 45, Sr/Y ~ 50) were produced by assimilation-fractional crystallization processes at mid-crustal depths
    corecore