2,827 research outputs found
Constraint propagation in the family of ADM systems
The current important issue in numerical relativity is to determine which
formulation of the Einstein equations provides us with stable and accurate
simulations. Based on our previous work on "asymptotically constrained"
systems, we here present constraint propagation equations and their eigenvalues
for the Arnowitt-Deser-Misner (ADM) evolution equations with additional
constraint terms (adjusted terms) on the right hand side. We conjecture that
the system is robust against violation of constraints if the amplification
factors (eigenvalues of Fourier-component of the constraint propagation
equations) are negative or pure-imaginary. We show such a system can be
obtained by choosing multipliers of adjusted terms. Our discussion covers
Detweiler's proposal (1987) and Frittelli's analysis (1997), and we also
mention the so-called conformal-traceless ADM systems.Comment: 11 pages, RevTeX, 2 eps figure
Adjusted ADM systems and their expected stability properties: constraint propagation analysis in Schwarzschild spacetime
In order to find a way to have a better formulation for numerical evolution
of the Einstein equations, we study the propagation equations of the
constraints based on the Arnowitt-Deser-Misner formulation. By adjusting
constraint terms in the evolution equations, we try to construct an
"asymptotically constrained system" which is expected to be robust against
violation of the constraints, and to enable a long-term stable and accurate
numerical simulation. We first provide useful expressions for analyzing
constraint propagation in a general spacetime, then apply it to Schwarzschild
spacetime. We search when and where the negative real or non-zero imaginary
eigenvalues of the homogenized constraint propagation matrix appear, and how
they depend on the choice of coordinate system and adjustments. Our analysis
includes the proposal of Detweiler (1987), which is still the best one
according to our conjecture but has a growing mode of error near the horizon.
Some examples are snapshots of a maximally sliced Schwarzschild black hole. The
predictions here may help the community to make further improvements.Comment: 23 pages, RevTeX4, many figures. Revised version. Added subtitle,
reduced figures, rephrased introduction, and a native checked. :-
Constructing hyperbolic systems in the Ashtekar formulation of general relativity
Hyperbolic formulations of the equations of motion are essential technique
for proving the well-posedness of the Cauchy problem of a system, and are also
helpful for implementing stable long time evolution in numerical applications.
We, here, present three kinds of hyperbolic systems in the Ashtekar formulation
of general relativity for Lorentzian vacuum spacetime. We exhibit several (I)
weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric
hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's
original equations form a weakly hyperbolic system. We discuss how gauge
conditions and reality conditions are constrained during each step toward
constructing a symmetric hyperbolic system.Comment: 15 pages, RevTeX, minor changes in Introduction. published as Int. J.
Mod. Phys. D 9 (2000) 1
Sensitivity of the Fe K Compton shoulder to the geometry and variability of the X-ray illumination of cosmic objects
In an X-ray reflection spectrum, a tail-like spectral feature generated via Compton downscattering, known as a Compton shoulder (CS), appears at the low-energy side of the iron K line. Despite its great diagnostic potential, its use as a spectral probe of the reflector has been seriously limited due to observational difficulties and modelling complexities. We revisit the basic nature of the CS by systematic investigation into its dependence on spatial and temporal parameters. The calculations are performed by Monte Carlo simulations for sphere and slab geometries. The dependence is obtained in a two-dimensional space of column density and metal abundance, demonstrating that the CS solves parameter degeneration between them which was seen in conventional spectral analysis using photoelectric absorption and fluorescence lines. Unlike the iron line, the CS does not suffer from any observational dependence on the spectral hardness. The CS profile is highly dependent on the inclination angle of the slab geometry unless the slab is Compton-thick, and the time evolution of the CS is shown to be useful to constrain temporal information on the source if the intrinsic radiation is variable. We also discuss how atomic binding of the scattering electrons in cold matter blurs the CS profile, finding that the effect is practically similar to thermal broadening in a plasma with a moderate temperature of ~5 eV. Spectral diagnostics using the CS is demonstrated with grating data of X-ray binary GX 301â2, and will be available in future with high-resolution spectra of active galactic nuclei obtained by microcalorimeters.JSPS KAKENHI (Grant IDs: 24740190, 24105007), Advanced Leading graduate school for Photon Science (ALPS
Advantages of modified ADM formulation: constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura system
Several numerical relativity groups are using a modified ADM formulation for
their simulations, which was developed by Nakamura et al (and widely cited as
Baumgarte-Shapiro-Shibata-Nakamura system). This so-called BSSN formulation is
shown to be more stable than the standard ADM formulation in many cases, and
there have been many attempts to explain why this re-formulation has such an
advantage. We try to explain the background mechanism of the BSSN equations by
using eigenvalue analysis of constraint propagation equations. This analysis
has been applied and has succeeded in explaining other systems in our series of
works. We derive the full set of the constraint propagation equations, and
study it in the flat background space-time. We carefully examine how the
replacements and adjustments in the equations change the propagation structure
of the constraints, i.e. whether violation of constraints (if it exists) will
decay or propagate away. We conclude that the better stability of the BSSN
system is obtained by their adjustments in the equations, and that the
combination of the adjustments is in a good balance, i.e. a lack of their
adjustments might fail to obtain the present stability. We further propose
other adjustments to the equations, which may offer more stable features than
the current BSSN equations.Comment: 10 pages, RevTeX4, added related discussion to gr-qc/0209106, the
version to appear in Phys. Rev.
Neutron wave packet tomography
A tomographic technique is introduced in order to determine the quantum state
of the center of mass motion of neutrons. An experiment is proposed and
numerically analyzed.Comment: 4 pages, 3 figure
- âŠ