4 research outputs found

    Formation of Multipartite Entanglement Using Random Quantum Gates

    Full text link
    The formation of multipartite quantum entanglement by repeated operation of one and two qubit gates is examined. The resulting entanglement is evaluated using two measures: the average bipartite entanglement and the Groverian measure. A comparison is made between two geometries of the quantum register: a one dimensional chain in which two-qubit gates apply only locally between nearest neighbors and a non-local geometry in which such gates may apply between any pair of qubits. More specifically, we use a combination of random single qubit rotations and a fixed two-qubit gate such as the controlled-phase gate. It is found that in the non-local geometry the entanglement is generated at a higher rate. In both geometries, the Groverian measure converges to its asymptotic value more slowly than the average bipartite entanglement. These results are expected to have implications on different proposed geometries of future quantum computers with local and non-local interactions between the qubits.Comment: 7 pages, 5 figure

    Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor

    Full text link
    Majorana fermions are the only fermionic particles that are expected to be their own antiparticles. While elementary particles of the Majorana type were not identified yet, quasi-particles with Majorana like properties, born from interacting electrons in the solid, were predicted to exist. Here, we present thorough experimental studies, backed by numerical simulations, of a system composed of an aluminum superconductor in proximity to an indium arsenide nanowire, with the latter possessing strong spin-orbit coupling. An induced 1d topological superconductor - supporting Majorana fermions at both ends - is expected to form. We concentrate on the characteristics of a distinct zero bias conductance peak (ZBP), and its splitting in energy, both appearing only with a small magnetic field applied along the wire. The ZBP was found to be robustly tied to the Fermi energy over a wide range of system parameters. While not providing a definite proof of a Majorana state, the presented data and the simulations support strongly its existence
    corecore