8 research outputs found

    Quantum Speed Limits of Spin Chain Dynamics : Applying Quantum Speed Limits to Spin Chains used as Quantum Channels

    No full text
    Quantum computers, like classical ones, need to be capable of sending informa-tion between different parts of the computer. Spin chains are one viable method of sending qubits while preserving the superposition and entanglement of a state. We use quantum speed limits, which give bounds on how fast non-relativistic quantum systems can evolve, to study simple Heisenberg chains and their efficacy as quantum channels

    Beta spectrum of unique first-forbidden decays as a novel test for fundamental symmetries

    No full text
    Within the Standard Model, the weak interaction of quarks and leptons is characterized by certain symmetry properties, such as maximal breaking of parity and favored helicity. These are related to the V−A structure of the weak interaction. These characteristics were discovered by studying correlations in the directions of the outgoing leptons in nuclear beta decays. Presently, correlation measurements in nuclear beta decays are intensively studied to probe for signatures for deviations from these couplings, which are an indication of Beyond Standard Model physics. We show that the structure of the energy spectrum of emitted electrons in unique first-forbidden β-decays is sensitive to the symmetries of the weak interaction, and thus can be used as a novel probe of physics beyond the standard model. Furthermore, the energy spectrum gives constraints both in the case of right and left couplings of the new beyond standard model currents. We show that a measurement with modest energy resolution of ≈20 keV is expected to lead to new constraints on beyond the standard model interactions with tensor couplings

    Gait Detection from a Wrist-Worn Sensor Using Machine Learning Methods: A Daily Living Study in Older Adults and People with Parkinson’s Disease

    No full text
    Remote assessment of the gait of older adults (OAs) during daily living using wrist-worn sensors has the potential to augment clinical care and mobility research. However, hand movements can degrade gait detection from wrist-sensor recordings. To address this challenge, we developed an anomaly detection algorithm and compared its performance to four previously published gait detection algorithms. Multiday accelerometer recordings from a wrist-worn and lower-back sensor (i.e., the “gold-standard” reference) were obtained in 30 OAs, 60% with Parkinson’s disease (PD). The area under the receiver operator curve (AUC) and the area under the precision–recall curve (AUPRC) were used to evaluate the performance of the algorithms. The anomaly detection algorithm obtained AUCs of 0.80 and 0.74 for OAs and PD, respectively, but AUPRCs of 0.23 and 0.31 for OAs and PD, respectively. The best performing detection algorithm, a deep convolutional neural network (DCNN), exhibited high AUCs (i.e., 0.94 for OAs and 0.89 for PD) but lower AUPRCs (i.e., 0.66 for OAs and 0.60 for PD), indicating trade-offs between precision and recall. When choosing a classification threshold of 0.9 (i.e., opting for high precision) for the DCNN algorithm, strong correlations (r > 0.8) were observed between daily living walking time estimates based on the lower-back (reference) sensor and the wrist sensor. Further, gait quality measures were significantly different in OAs and PD compared to healthy adults. These results demonstrate that daily living gait can be quantified using a wrist-worn sensor

    Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study

    No full text
    BackgroundWrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies. ObjectiveThe aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied to the wrist position to those applied to lower back–worn inertial sensors. MethodsParticipants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared to gait detection performance using lower back–worn inertial sensors. ResultsThe best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98 (SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%) per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids. ConclusionsAlgorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical studies and public health. Trial RegistrationISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987 International Registered Report Identifier (IRRID)RR2-10.1136/bmjopen-2021-05078
    corecore