3 research outputs found

    Agroecological management of fall armyworm using soil and botanical treatments reduces crop damage and increases maize yield

    Get PDF
    IntroductionFall armyworm continues to disrupt smallholder farming systems across sub-Saharan Africa, with sporadic outbreaks and chronic cereal crop losses. Smallholders have been adapting to the pest by increasing crop surveillance for targeted control measures and developing low-cost solutions. For example, some report placing soil or ash in maize whorls where the mechanism of pest control may be suffocation, abrasion leading to desiccation, or through the introduction of soil-borne entomopathogens.MethodsTo verify the efficacy of this approach we evaluated different soil types on maize infested with fall armyworm to assess their efficacy. We also evaluated the efficacy of pesticidal plant species, powdered and placed in leaf whorls to control fall armyworm. Results and discussionDifferent United States Department of Agriculture-characterised soil types (sand, loam, clay) and wood ash were effective in reducing the number of larvae and maize leaf damage by approximately 50%. Maize yield with the synthetic control (chlorpyriphos) was 13,700 kg/ha, which was 42% higher than the untreated control (7,900 kg/ha). Soil and ash treatments yields between 10,400 to 12,400 kg/ha were 24-36% higher than the untreated control. Dry soil applied after watering was most effective regardless of soil type. However, wet soil treatments applied before watering were also highly effective in reducing the number of fall armyworm larvae and reducing insect damage to maize leaves. Botanical powders from Azadirachta indica, Nicotiana tabacum, Cymbopogon citratus and Lippia javanica were also effective when applied to maize leaf whorls. Plant powder treatments and water extracts were significantly effective in reducing the number of larvae and leaf damage. The highest yield obtained with botanicals was observed with A. indica powder (5,600 kg/ha), C. citratus extract (5,800 kg/ha) and N. tabacum extract (5,800 kg/ha), where the synthetic treatment yield was 6,900 kg/ha and the untreated yield was 1,700 kg/ha. We conclude that smallholder farmer innovations in managing fall armyworm are effective low-cost options. Scientific validation of soil treatments and botanicals should help increase the confidence of policy makers and allow knowledge extension services to recommend their use to smallholder farmers, which in turn may reduce reliance on imported synthetic pesticides and improve farmer resilience, circular economies and human and environmental health

    Extracts of common pesticidal plants increase plant growth and yield in common bean plants

    Get PDF
    Common bean (Phaseolus vulgaris) is an important food and cash crop in many countries. Bean crop yields in sub-Saharan Africa are on average 50% lower than the global average, which is largely due to severe problems with pests and diseases as well as poor soil fertility exacerbated by low-input smallholder production systems. Recent on-farm research in eastern Africa has shown that commonly available plants with pesticidal properties can successfully manage arthropod pests. However, reducing common bean yield gaps still requires further sustainable solutions to other crop provisioning services such as soil fertility and plant nutrition. Smallholder farmers using pesticidal plants have claimed that the application of pesticidal plant extracts boosts plant growth, potentially through working as a foliar fertiliser. Thus, the aims of the research presented here were to determine whether plant growth and yield could be enhanced and which metabolic processes were induced through the application of plant extracts commonly used for pest control in eastern Africa. Extracts from Tephrosia vogelii and Tithonia diversifolia were prepared at a concentration of 10% w/v and applied to potted bean plants in a pest-free screen house as foliar sprays as well as directly to the soil around bean plants to evaluate their contribution to growth, yield and potential changes in primary or secondary metabolites. Outcomes of this study showed that the plant extracts significantly increased chlorophyll content, the number of pods per plant and overall seed yield. Other increases in metabolites were observed, including of rutin, phenylalanine and tryptophan. The plant extracts had a similar effect to a commercially available foliar fertiliser whilst the application as a foliar spray was better than applying the extract to the soil. These results suggest that pesticidal plant extracts can help overcome multiple limitations in crop provisioning services, enhancing plant nutrition in addition to their established uses for crop pest management

    Beneficial insects are associated with botanically rich margins with trees on small farms

    Get PDF
    Beneficial insect communities on farms are influenced by site- and landscape-level factors, with pollinator and natural enemy populations often associated with semi-natural habitat remnants. They provide ecosystem services essential for all agroecosystems. For smallholders, natural pest regulation may be the only affordable and available option to manage pests. We evaluated the beneficial insect community on smallholder bean farms (Phaseolus vulgaris L.) and its relationship with the plant communities in field margins, including margin trees that are not associated with forest fragments. Using traps, botanical surveys and transect walks, we analysed the relationship between the floral diversity/composition of naturally regenerating field margins, and the beneficial insect abundance/diversity on smallholder farms, and the relationship with crop yield. More flower visits by potential pollinators and increased natural enemy abundance measures in fields with higher plant, and particularly tree, species richness, and these fields also saw improved crop yields. Many of the flower visitors to beans and potential natural enemy guilds also made use of non-crop plants, including pesticidal and medicinal plant species. Selective encouragement of plants delivering multiple benefits to farms can contribute to an ecological intensification approach. However, caution must be employed, as many plants in these systems are introduced species
    corecore