4 research outputs found

    Article biodiversity inside bottles: animals, fungi, and plants in traditional alcoholic drinks

    Get PDF
    The use of animals, fungi, and plants as a source of bioactive compounds has been widely practiced in diverse cultures throughout the world, particularly in alcoholic drinks. The nature of the biological material, method of preparation and alcohol concentration play a predominant role in the extraction of bioactive compounds and the achievement of desired results. However, certain aspects must be considered to guarantee the innocuity of these drinks and reduce the risk of intoxication, infections and allergic reactions, aspects which are sometimes overlooked. In addition, the implications of using threatened or protected species must be considered to reduce the negative impact on their populations. The authors recommend the establishment of production systems which guarantee products with adequate quality controls and ensure the benefits to the consumer

    Social and environmental factors in the diversity of tomato landraces from the South-Central region of Mexico

    No full text
    ABSTRACT: In the present study, we investigated the influence of social and environmental factors in the genetic diversity of tomato landraces in the South-Central region of Mexico. A total of 30 tomato landraces, collected in 18 villages with different ethnolinguistic affiliations, were analyzed. We reported that the genetic diversity of tomato landraces is associated with the ethnolinguistic group, weather, and soil-type present in the region studied. Our results showed that there are morphological differences between landraces grown by different ethnolinguistic groups; however, there was also evidence of morphological similarities between landraces from groups with different ethnolinguistic affiliations. Finally, different selection criteria, mainly fruit color, size and shape, plays an important role in the phenotypic divergence among landraces grown in different traditional farming systems

    Evaluation of Resistance of Eleven Maize Races (Zea mays L.) to the Red Spider Mite (Tetranychus merganser, Boudreaux)

    No full text
    At least 59 maize races (Zea mays L.) have been registered in Mexico. The feeding damage caused by insects and mites to maize crops generates up to ~30% of maize yield losses. Spider-mite-resistant plants are needed. The red spider mite, Tetranychus merganser Boudreaux (Acari: Tetranychidae), is distributed in the United States, China, Mexico, and Thailand. It is considered a potential pest in Mexican agriculture. The aim of this study was to evaluate the resistance mechanisms (antixenosis and antibiosis) of 11 native maize populations, representative of each race of maize grown in Tamaulipas, Mexico, to T. merganser under laboratory conditions. The aim was also to obtain information on the chemical composition and some morphological characteristics of these maize races and to identify resistant maize races for incorporation into a breeding program. Antixenosis was assessed by non-preference for oviposition and feeding. Antibiosis was measured by growth rate (ri). The presence of secondary metabolites in the 11 maize races were different. In the 11 maize races, quantitative analysis of total phenol concentration, total flavonoid concentration, and antioxidant capacity were significantly different. The multivariate analysis of variance showed that there is evidence of antixenosis noted by maize race differences in egg laying and percentage feeding damage but not of antibiosis noted by growth rate. Red spider mites laid significantly more eggs on the Celaya (24 h: 25.67 ± 17.04, 48 h: 42.67 ± 26.86, 72 h: 49.33 ± 28.54) race than on Raton (24 h: 7.00 ± 5.00, 48 h: 12.67 ± 8.02, 72 h: 14.67 ± 9.29) and Elotes Occidentales × Tuxpeño (24 h: 9.67 ± 5.85, 48 h: 15.33 ± 10.69, 72 h: 17.67 ± 10.97) races. However, the growth rate and mortality of T. merganser in the 11 corn races were similar. The Vandeño (24 h: 11.67 ± 2.89, 48 h: 27.67 ± 7.64, 72 h: 30.00 ± 18.03) and Tabloncillo × Tuxpeño (24 h: 18.33 ± 7.64, 48 h: 25.00 ± 8.66, 72 h: 25.00 ± 8.66) races were the most resistant to red spider mite damage, whereas the most susceptible race was Celaya (24 h: 26.67 ± 15.28, 48 h: 48.33 ± 29.30, 72 h: 65.00 ± 30.00). Further analysis by PCA at 24, 48, and 72 h found the Celaya race positively correlated to growth rate and oviposition of T. merganser and to a lesser extent with the percentage of feeding damage, suggesting that the Celaya race was most susceptible to T. merganser. At 24 h, the Vandeño race was most resistant, given a negative correlation to growth rate and oviposition by T. merganser. The PCA at 48 and 72 h noted the Elotes Occidentales × Tuxpeño race was most resistant to red spider mite, with negative relationships to growth rate and oviposition and, to a lesser extent, to feeding damage. This resistance is due to the differences in both its morphological characteristics and the secondary metabolites present in their leaves
    corecore