456 research outputs found

    Thermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases from an extreme thermophile Thermus thermophilus HB8: protein structure and Zn2+ binding

    Get PDF
    AbstractThermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases have been purified from an extreme thermophile, Thermus thermophilus HB8. Valyl-tRNA and isoleucyl-tRNA synthetases are found to be monomer proteins (Mr 108000 and 129000, respectively), while methionyl-tRNA synthetase is a dimer protein (Mr 150000). These enzymes are very similar with respect to amino acid compositions and α-helix contents as estimated by circular dichroism analyses. Furthermore, two Zn2+ are tightly bound to each of these synthetases. These data suggest that valyl-tRNA and isoleucyl-tRNA synthetases consist of two domains, each corresponding to the subunit of methionyl-tRNA synthetase

    Identification of putative domain linkers by a neural network – application to a large sequence database

    Get PDF
    BACKGROUND: The reliable dissection of large proteins into structural domains represents an important issue for structural genomics/proteomics projects. To provide a practical approach to this issue, we tested the ability of neural network to identify domain linkers from the SWISSPROT database (101602 sequences). RESULTS: Our search detected 3009 putative domain linkers adjacent to or overlapping with domains, as defined by sequence similarity to either Protein Data Bank (PDB) or Conserved Domain Database (CDD) sequences. Among these putative linkers, 75% were "correctly" located within 20 residues of a domain terminus, and the remaining 25% were found in the middle of a domain, and probably represented failed predictions. Moreover, our neural network predicted 5124 putative domain linkers in structurally un-annotated regions without sequence similarity to PDB or CDD sequences, which suggest to the possible existence of novel structural domains. As a comparison, we performed the same analysis by identifying low-complexity regions (LCR), which are known to encode unstructured polypeptide segments, and observed that the fraction of LCRs that correlate with domain termini is similar to that of domain linkers. However, domain linkers and LCRs appeared to identify different types of domain boundary regions, as only 32% of the putative domain linkers overlapped with LCRs. CONCLUSION: Overall, our study indicates that the two methods detect independent and complementary regions, and that the combination of these methods can substantially improve the sensitivity of the domain boundary prediction. This finding should enable the identification of novel structural domains, yielding new targets for large scale protein analyses

    Multistep Engineering of Pyrrolysyl-tRNA Synthetase to Genetically Encode Nɛ-(o-Azidobenzyloxycarbonyl) lysine for Site-Specific Protein Modification

    Get PDF
    SummaryPyrrolysyl-tRNA synthetase (PylRS) esterifies pyrrolysine to tRNAPyl. In this study, Nɛ-(tert-butyloxycarbonyl)-L-lysine (BocLys) and Nɛ-allyloxycarbonyl-L-lysine (AlocLys) were esterified to tRNAPyl by PylRS. Crystal structures of a PylRS catalytic fragment complexed with BocLys and an ATP analog and with AlocLys-AMP revealed that PylRS requires an Nɛ-carbonyl group bearing a substituent with a certain size. A PylRS(Y384F) mutant obtained by random screening exhibited higher in vitro aminoacylation and in vivo amber suppression activities with BocLys, AlocLys, and pyrrolysine than those of the wild-type PylRS. Furthermore, the structure-based Y306A mutation of PylRS drastically increased the in vitro aminoacylation activity for Nɛ-benzyloxycarbonyl-L-lysine (ZLys). A PylRS with both the Y306A and Y384F mutations enabled the large-scale preparation (>10 mg per liter medium) of proteins site-specifically containing Nɛ-(o-azidobenzyloxycarbonyl)-L-lysine (AzZLys). The AzZLys-containing protein was labeled with a fluorescent probe, by Staudinger ligation

    Structural insights into the similar modes of Nrf2 transcription factor recognition by the cytoplasmic repressor Keap1

    Get PDF
    The structure of mouse Keap1-DC complexed with the DLG motif peptide of Nrf2 transcription factor was determined at 1.9 Å resolution. The structure showed that the peptide binds to Keap1-DC at the bottom region of the β-propeller domain

    The three-dimensional structure of the colicin E3 immunity protein by distance geometry calculation

    Get PDF
    AbstractThe three-dimensional solution structure of the colicin E3 immunity protein (84 residues) was determined by distance geometry calculations. The hydrophilic side of a four-stranded antiparallel β-sheet constitutes a part of the surface of the protein, and two loops lie on the hydrophobic side of the sheet. All the three specificity-determining residues, which are included in the center of the β-sheet, display their side groups on the protein surface

    Deep Knot Structure for Construction of Active Site and Cofactor Binding Site of tRNA Modification Enzyme

    Get PDF
    AbstractThe tRNA(Gm18) methyltransferase (TrmH) catalyzes the 2′-O methylation of guanosine 18 (Gua18) of tRNA. We solved the crystal structure of Thermus thermophilus TrmH complexed with S-adenosyl-L-methionine at 1.85 Å resolution. The catalytic domain contains a deep trefoil knot, which mutational analyses revealed to be crucial for the formation of the catalytic site and the cofactor binding pocket. The tRNA dihydrouridine(D)-arm can be docked onto the dimeric TrmH, so that the tRNA D-stem is clamped by the N- and C-terminal helices from one subunit while the Gua18 is modified by the other subunit. Arg41 from the other subunit enters the catalytic site and forms a hydrogen bond with a bound sulfate ion, an RNA main chain phosphate analog, thus activating its nucleophilic state. Based on Gua18 modeling onto the active site, we propose that once Gua18 binds, the phosphate group activates Arg41, which then deprotonates the 2′-OH group for methylation

    The structure of TTHA0988 from Thermus thermophilus, a KipI-KipA homologue incorrectly annotated as allophanate hydrolase

    Get PDF
    The Thermus thermophilus protein TTHA0988 is a protein of unknown function which represents a fusion of two proteins found almost ubiquitously across the bacterial kingdom. These two proteins perform a role regulating sporulation in Bacillus subtilis, where they are known as KipI and KipA. kipI and kipA genes are usually found immediately adjacent to each other and are often fused to produce a single polypeptide, as is the case with TTHA0988. Here, three crystal forms are reported of TTHA0988, the first structure to be solved from the family of `KipI-KipA fusion' proteins. Comparison of the three forms reveals structural flexibility which can be described as a hinge motion between the `KipI' and `KipA' components. TTHA0988 is annotated in various databases as a putative allophanate hydrolase. However, no such activity could be identified and genetic analysis across species with known allophanate hydrolases indicates that a misannotation has occurred. © 2011, Wiley-Blackwell. The definitive version is available at www3.interscience.wiley.co

    Mechanisms of the inhibition of reverse transcription by unmodified and modified antisense oligonucleotides

    Get PDF
    AbstractWe demonstrated that unmodified and modified (phosphorothioate) oligonucleotides prevent cDNA synthesis by AMV or HIV reverse transcriptases. Antisense oligonucleotide/RNA hybrids specifically arrest primer extension. The blockage involves the degradation of the RNA fragment bound to the antisense oligonucleotide by the reverse transcriptase-associated RNase H activity. However, the phosphorothioate oligomer inhibited polymerization by binding to the AMV RT rather than to the template RNA, whereas there was no competitive binding of the phosphorothioate oligomer on the HIV RT during reverse transcription

    Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3

    Get PDF
    The CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-like factors (CELF) family or the Bruno-like family and is involved in the control of splicing, translation and mRNA degradation. Several target RNA sequences of CUG-BP1 have been predicted, such as the CUG triplet repeat, the GU-rich sequences and the AU-rich element of nuclear pre-mRNAs and/or cytoplasmic mRNA. CUG-BP1 has three RNA-recognition motifs (RRMs), among which the third RRM (RRM3) can bind to the target RNAs on its own. In this study, we solved the solution structure of the CUG-BP1 RRM3 by hetero-nuclear NMR spectroscopy. The CUG-BP1 RRM3 exhibited a noncanonical RRM fold, with the four-stranded b-sheet surface tightly associated with the N-terminal extension. Furthermore, we determined the solution structure of the CUG-BP1 RRM3 in the complex with (UG)3 RNA, and discovered that the UGU trinucleotide is specifically recognized through extensive stacking interactions and hydrogen bonds within the pocket formed by the b-sheet surface and the N-terminal extension. This study revealed the unique mechanism that enables the CUG-BP1 RRM3 to discriminate the short RNA segment from other sequences, thus providing the molecular basis for the comprehension of the role of the RRM3s in the CELF/Bruno-like family
    corecore